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Introduction

The older term for number theory is arithmetic. By the early twentieth century,
it had been superseded by ”number theory”. The word ”arithmetic” (from the Greek,
arithmos which means ”number”) is used by the general public to mean ”elementary
calculations”; it has also acquired other meanings in mathematical logic, as in Peano
arithmetic, and computer science, as in floating point arithmetic. Arithmetic is the old-
est and most elementary branch of mathematics, used very popularly, for tasks ranging
from simple day-to-day counting to advanced science and business calculations. It
involves the study of quantity, especially as the result of operations that combine num-
bers. The use of the term arithmetic for number theory regained some ground in the
second half of the 20th century, arguably in part due to French influence. In particular,
arithmetical is preferred as an adjective to number-theoretic.

Elementary arithmetic starts with the natural numbers and the written symbols (dig-
its) which represent them. The process for combining a pair of these numbers with the
four basic operations traditionally relies on memorized results for small values of num-
bers, including the contents of a multiplication table to assist with multiplication and
division. Elementary arithmetic also includes fractions and negative numbers, which
can be represented on a number line.

Number theory is devoted primarily to the study of the integers. Number theorists
study prime numbers as well as the properties of objects made out of integers (e.g.,
rational numbers) or defined as generalizations of the integers (e.g., algebraic integers).
Integers can be considered either in themselves or as solutions to equations (Diophan-
tine geometry). Questions in number theory are often best understood through the
study of analytical objects (e.g., the Riemann zeta function) that encode properties of
the integers, primes or other number-theoretic objects in some fashion (analytic num-
ber theory). One may also study real numbers in relation to rational numbers, e.g., as
approximated by the latter (Diophantine approximation).
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Fixing notations

Symbol Meaning

@ for all, for every;
D there exists (at least one);
D! there exists exactly one;
s.t. such that;
ñ implies;
ô if and only if;
x P A the point x belongs to a set A
x R A the point x does not belongs to the set A
N the set of natural number (counting numbers) 1, 2, 3, . . .
Z the set of all the integers (positive, negative or zero)
Q the set of rational numbers
R the set of real numbers
C the set of complex numbers
tx P A : Ppxqu the subset of the elements x in a set A

such that the statement Ppxq is true
H the empty set, the set with nothing in it
x P A means that the point x belongs to a set A

or that x is a element of A
A Ď B A is a subset of B

i.e. any element of A also belongs to B
(in symbolic notation: x P A ñ x P B that we use when doing proofs).

A “ B the sets A and B contain exactly the same points
This statement is equivalent to saying: A Ď B AND B Ď A

tpu singleton set (Logically speaking, the ”point p” is not the same thing as
”the sets tpu whose only element is p.”)

AX B indicates the intersection of two sets;
An element x is in AX B ô x P A AND x P B. Notice AX B “ BX A.

AY B the union of two sets.
An element x lies in AY B ô Either x P A OR x P B (or BOTH).
Notice AY B “ BY A.
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Symbol Meaning

Şn
i“1 Ai “ A1 X ¨ ¨ ¨ X An the set tx : x P Ai f or every iu where Ai are sets

Ťn
i“1 Ai “ A1 Y ¨ ¨ ¨ Y An the set tx : D some i such that x P Aiu where Ai are sets

Ş

α Aα the set tx : x P Aα f or every α P Iu
where Aα are sets and I a set of indexes

Ť

α Aα the set tx : D some i such that x P Aiu

where Aα are sets and I a set of indexes
AzB the difference set tx : x P A and x R Bu (Note that AzB “ AX Bc.
Ac the complement of a set A.

Here A is a subset of some larger space X
and its complement is the set Ac “ tx P X : x R Au “ XzA.

Aˆ B the cartesian product tpa, bq|a P A and b P Bu
A1 ˆ ¨ ¨ ¨ ˆ An “

śn
i“1 Ai the product of the sets Ai tpa1, . . . , anq|ai P Aiu

ś8

i“1 Ai the product of the sets Ai tpa1, . . . , an, . . . q|ai P Aiu
ś

αPI Aα the set consisting of all indexed words paαqαPI, where aα P Aα.
These are the maps φ : I Ñ YαPIAα such that φpαq P Aα

for every index α P I.

Mappings

φ : X Ñ Y
x ÞÑ φpxq A map φ from a set X to another set Y is an operation that associates

each element in X to a single element in Y.
Unless stated otherwise, mapping φpxq are assumed
to be defined for every x P X. If not,

De f pφq domain of definition of φ, i.e. the points such that φ is defined.
Rangepφq “ φpXq the range of the map φ i.e. tb P Y : Da P X such that b “ φpaqu
φpSq the forward image for any subset of S Ď X

i.e. tb P Y : Da P S such that b “ φpaqu “ tφpaq : a P Au
φ : X ãÑ Y φ is injective or ”one-to-one” i.e. if a1 ‰ a2 ñ φpa1q ‰ φpa2q

φ : X� Y φ is surjective i.e. if φpXq “ Y
φ : X » Y φ is bijective i.e. φ is both one-to-one and onto

i.e. @b P Y, D!a P X such that φpaq “ b
ψ “ φ φ,ψ : X Ñ Y are equal, i.e. they have same action: φpaq “ ψpaq

for all a P X. (Ex: px2 ` x4q{p1` x2q “ x2.)
Γpφq the graph of Γpφq which is a subset of the Cartesian product set

X ˆ Y: tpx, yq P X ˆ Y : y “ φpxqu “ tpx, φpxqq : x P Xu
pxq ˆ Y ”vertical fiber” for each x P X, tpx, yq : y P Yu

“ tall points pa, bq P X ˆ Y such that a “ xu
Γpφq X ppxq ˆ Yq “ tpx, bqu with b “ φpxq,
knowing φ is equivalent with knowing Γpφq.

idX : X Ñ X the identity map on X sending each point x P X to x itself.
φ´1 : Y Ñ X the inverse map of φ : X Ñ Y

such that φ´1pφpaqq “ a, for all a P X and φpφ´1pbqq “ b, for all b P Y
φ´1pbq “ the unique element a P X such that φpaq “ b.
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Part I

Arithmetic of Z, divisibility theory
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Chapter 1

Interlude on natural numbers,
induction and well ordering

Natural numbers are the set N “ t1, 2....u will interest us along this course. There
is an important principle, or method of proof, which applies to this number system,
but not any other standard number systems , such as the set Z of all the integers, or
the sets Q, R or C of rational, real or complex numbers. There are three versions of
this principle, known as the principle of induction, the most familiar, the principle of
strong induction and the well-ordering principle; there are logically equivalent, in the
sense that each implies the other, but in different contexts one of them may be more
convenient to use than the other.

Theorem 1.0.1. The following principles are equivalent:

1. The principle of induction (version 1): Let Ppnq be statements indexed by
natural integers. If Pp1q is true, and Ppnq implies Ppn ` 1q, for all n P N, then
Ppnq is true for any n PN.

2. The principle of induction (version 2): Suppose that A Ď N, that 1 P A,
and that n P A implies n` 1 P A for any n PN; then A “N.

3. The principle of strong induction (version 1): If Pp1q is true, and Pp1q,
Pp2q, ... , Ppnq together imply Ppn` 1q, then Ppnq is true for all n PN.

4. The principle of strong induction (version 2): Suppose that B ĎN, that
1 P B, and that if 1, 2, ..,n P B, then n` 1 P B; then B “N

5. The well-ordering principle: If C Ď N and C is non-empty, then C has a
least element for the order ě on N (that is there is a c P C such that c ě d for
all d P C).

Proof. To see that 1. implies 2.. Assume 1., and suppose that A satisfies the hypothesis
of 2.. Let Ppnq be the statement n P A, so Pp1q is true, since 1 P A; if Ppnq is true then
n P A, so n` 1 P A, and hence Ppn` 1q is true; thus Ppnq implies Ppn` 1q, so Ppnq is
true for all n P N by 1.; thus n P A, for any n P N, so A “ N. For the converse (that
2. implies 1.), given Ppnq take A “ tn PN|Ppnq is trueu, then 1 P A (since Pp1q is true),

13
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and if n P A then Ppnq is true, so Ppn` 1q is true, giving n` 1 P A; hence A “ N by
2. so Ppnq is true for all n PN.
Similarly, we obtain that 3. is equivalent to 4..
To see that 2. implies 4. Suppose that B satisfies the hypotheses of 4.. Let

A “ tn PN|1, ...,n P Bu

Then A ĎN, and 1 P A (since 1 P B). If n P A then 1, 2, ....,n P B and hence n` 1 P A
(by definition of A); thus n P A implies n` 1 P A, so A “N, by 2. This means that for
each n PN, we have 1, 2, ..,n P B, so, in particular n P B; thus B “N, as required.
To see that 4. implies 5., we show that if C Ď N, and C has no least element then C
is empty. Let B “ NzC, the complement of C in N. Then 1 P B, for otherwise 1 P C
and so 1 is a least element of C (since it is a least element of N). If 1, 2, ...,n P B then
1, 2, ...,n R C; it follows that n` 1 R C (for otherwise n` 1 would be a least element of
C), so n` 1 P B. Thus B satisfies the hypotheses of 4., so B “N and C is empty.
To see that 5. implies 2., suppose that A satisfies the hypotheses of 2., and let C “NzA.
If C is non empty, then it has a least element c. Since 1 P A (since 0 P A) then c ‰ 1,
so c ´ 1 P N. Now, c ´ 1 R C (for otherwise c could not be a least element of C), and
hence c´ 1 P A. But n P A implies n` 1 P A, then c P A, which is a contradiction. So
C is empty and A “N. �

Remark 1.0.2. 1. We can also start the induction process from n0 ‰ 0. For in-
stance, the principle of induction becomes: If Ppn0q is true, and Ppnq implies
Ppn` 1q, for some n ą n0, then Ppnq is true for any n ě n0.

2. The principle of strong induction is used instead of the principle of induction the
hypothesis Ppnq alone is not strong enough to prove Ppn` 1q.

3. The well-ordering principle is easily seen to be false if we replace N with any of
the other standard number system: for instance, the set of the strictly positive
rational numbers has no least element.

4. The previous principle implies 0 element, the 1 element and the addi-
tion ` (as initial data) are enough to get all the natural integer. We
will see that it is not so simple with the multiplication.



Chapter 2

Divisibility

2.1 Definition of divisibility

In mathematics, the notion of a divisor originally arose within the context of arith-
metic of whole numbers. With the development of abstract rings, of which the integers
are the archetype, the original notion of divisor found a natural extension. We recall
here the notion of divisibility for integers.

Definition 2.1.1. Let a and b be integers, a ‰ 0. We say that a divides b, denoted
by a|b, if there exist an integer c such that b “ ca. We also say b is divisible by a, b
is a multiple of a or a is a divisor of b.

Example 2.1.2. 2|6, ´3|9, ´5| ´ 10, 4|0, 3 - 7.

Remark 2.1.3. Let’s insist on the following trivial facts.

1. 1|n, for any n P Z,

2. 0 - n, for any n P Z.

3. n|0, for any n P Z which is non-zero.

We enumerate some of the basic, trivial but essential properties about divisibility
with the following theorem.

Theorem 2.1.4. Let a, b, c, x, y be integers.

1. If a|b, the a|xb.

2. If a|b and a|c, then a|bx` cy.

3. If a|b then xa|xb.

4. If a|b, then |a| ď |b|. In particular, if a|b and b|a, then a “ ˘b.

2.2 Some divisibility tests

For practical as well as theoretical purposes we often want to establish test to see
wether an integer is divisible by a certain number.

15
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2.2.1 Divisibility by 10n, 5, 25

We recall the following divisibility test. The proof is left to the reader, he can use a
similar proof as the one of the following section.

Test 2.2.1. 1. A number is divisible by 10n if and the last n digits are zeros.

2. A number is divisible by 5 if and only if the last digit is 0 or 5.

3. A number is divisible by 25 if and only if the last two digits are divisible by 25.

2.2.2 Divisibility by a power of 2

Test 2.2.2. Let n be a positive integer. A number is divisible by 2n if and only if the
last n digits are divisible by 2n.

Proof. Let dmdm´1...d1d0 a m-digits number. We have

dmdm´1...d2d1 “ dmdm´1...dn`1 ˆ 10n
` dn...d1.

Note that 2n|10n, then also 2n|dmdm´1...d1 ˆ 10n. As a consequence, 2n|dmdm´1...d2d1 if
and only if 2n|dn...d2d1. �

Example 2.2.3. Take 123456 as an example. Since 56 is divisible by 4, we know that
123456 is also divisible by 4.

2.2.3 Divisibility by 3 and 9

Test 2.2.4. A number is divisible by 3 (reps. 9) if and only if its sum of digits is
divisible by 3 (resp. 9).

Proof. Let dmdm´1...d1d0 a m`1-digits number. Write 9ppq for the p-digits number 9...9.
We have

dmdm´1...d1d0 “ dm ˆ 10m ` dm´1 ˆ 10m´1 ` ...` d0 ˆ 100

“ dm ˆ p1` 9pmqq ` dm´1 ˆ p1` 9pm´1qq ` ...` d1 ˆ p1` 9q ` d0
“ 9ˆ pdm ˆ 1pmq ` dm´1 ˆ 1pm´1q ` ...d1q ` pdm ` ...` d0q.

Note that 3 and 9 divides 9ˆpdmˆ1pmq`dm´1ˆ1pm´1q`...d1q. As a consequence, we have
that 3 (resp. 9) divides dmdm´1...d1d0 if and only if 3 (resp. 9) divides pdm` ...`d0q. �

Example 2.2.5. Take 123456 as an example. Since 1 ` 2 ` 3 ` 4 ` 5 ` 6 “ 21 is
divisible by 3 but not 9, we know that 123456 is also divisible by 3 but not 9.

2.2.4 Divisibility by 11

Test 2.2.6. The n`1-digit number an...a0 is divisible by 11 if and only if the alternating
sum of the digits p´1qnan ` p´1qn´1an´1 ` ...´ a1 ` a0 is divisible by 11.
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Proof. Let dmdm´1...d1d0 a m` 1-digits number. We have

dmdm´1...d1d0

“ dm ˆ 10m ` dm´1 ˆ 10m´1 ` ...` d0 ˆ 100

“ dm ˆ pp11´ 1qm ` dm´1 ˆ p11´ 1qm´1 ` ...` d1 ˆ p11´ 1qq ` d0

“ 11ˆm` pdm ` p´1qm´1dm´1 ` ...` d0q.

As a consequence, we have that 11 divides dmdm´1...d1d0 if and only if 11 divides pdm `

p´1qm´1dm´1 ` ...` d0q. �

2.2.5 More divisibility test

We have that

Test 2.2.7. 1. A number is divisible by 6 if and only if it is divisible by both 2 and
3,

2. A number is divisible by 12 if and only if it is divisible by 3 and 4.

In general, if p|n, q|n, can we say that pq|n? If not what we can say ? You should
be able to answer to this question after studying this and the next section.
More divisibility test will be discussed in the exercises.

2.3 G.C.D. and L.C.M.

In this section we shall go other the familiar concept of G.C.D. (or H.C.F.) and L.C.M.,
as well as some of their important properties.

Definition 2.3.1. Let a and b be integers, not both zeros. The greatest common
divisor (also called highest common factor, abbreviated as G. C. D. or H. C. F.)
of a and b, denoted as gcdpa, bq, is defined to be the largest integer which divides both a
and b.
That is d “ gcdpa, bq.

1. d|a and d|b;

2. d ą 0;

3. For any d1 P Z such that d1|a and d1|b then d1|d.

Example 2.3.2. 1. gcdp24, 36q “ 12,

2. gcdp´8, 6q “ 2,

3. gcdp2,´9q “ 1.

Definition 2.3.3. Let a and b be integers, not both zeros. The lowest common
divisor (abbreviated as L. C. M.) of a and b, denoted as lcmpa, bq, is defined to be the
largest integer which divides both a and b.
That is d “ lcmpa, bq.

1. a|d and b|d;
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2. d ą 0;

3. For any d1 P Z such that a|d1 and b|d1 then d|d1.

Example 2.3.4. 1. lcmp24, 36q “ 72,

2. lcmp´8, 6q “ 24,

3. lcmp2,´9q “ 18.

The G. C. D and L. C. M. of more than two integers can be similarly defined.

2.4 Prime and coprime numbers

Definition 2.4.1. We say that an integer p ą 1 is a prime integers if its only
divisors are 1 and itself. An integer n ą 1 which is not prime (such as 4, 6, 8, 9...) is
said to be composite; such an integer integer has the form n “ ab where 1 ă a ă n
and 1 ă b ă n.

Example 2.4.2. 2, 3 ,5, 7 are prime integers.

Remark 2.4.3. 1. Note that 1 is not prime.

2. The smallest prime is 2 and the other prime are odd.

Definition 2.4.4. We say that two non-zero integers a and b are coprime if gcdpa, bq “
1.

Example 2.4.5. 1. 12 and 35 are coprime since gcdp12, 35q “ 1.

2. 12 and 21 are not coprime since 3 divides 12 and 21.

3. Two distinct primes are always coprime.

In order to find specific examples of prime it seems reasonable to look at integers of
the form 2m ˘ 1, since many small primes, such as 3, 5, 7, 17, 31,...

Exercise 2.4.6 (Fermat numbers). If 2m ` 1 is prime then m “ 2n for some integer
n ě 0.
Indeed: We prove the contrapositive, that if m is not a power of 2 then 2m ` 1 is not
prime. If m is not a power of 2, then m has the form 2nq for some odd q ą 1. Now
the polynomial f ptq “ tq ` 1 has a root t “ ´1 because q is odd, so it is divisible by
t ` 1; this is a proper factor since q ą 1, so putting t “ x2n

we see that the polynomial
gpxq “ f px2n

q “ xm ` 1 has a proper factor x2n
` 1. Taking x “ 2 we see that 22n

` 1 is
a proper factor of the integer gp2q “ 2m ` 1, which cannot therefore be prime.

Numbers of the form Fn “ 22n
` 1 are called Fermat numbers, and those which

are prime are called Fermat primes.

Fermat conjecture that Fn is prime for every n ě 0. For n “ 0, .., 4 the number Fn
are indeed prime, but in 1732 Euler showed that the next Fermat number F5 “ 225

`1 “
641ˆ67000417 is a composite. The fermat numbers have been studied intensively, often
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with the aid of computers, but no further Fermat primes have been found. It is conceiv-
able that there are further Fermat primes (perhaps infinitely many) which we have not
yet found, but the evidence is not very convincing.

These primes are important in geometry: in 1801 Gauss showed that a regular
polygon with k sides can be constructed by ruler-and-compass methods if and only if
k “ 2ep1...pr where p1, ... , pr are Fermat primes.

Even if not many of the Fermat number Fn turn out to be composite, the following
result shows that their factors include an infinite set of primes, since distincts Fermat
numbers Fn are mutually coprime.
Indeed: Let d “ pFn,Fn`kq be the G.C.D. of the two Fermat numbers Fn and Fn`k,

where k ą 0. The polynomial x2k
´ 1 has a root x “ ´1, so it is divisible by x ` 1.

Putting x “ 22n
, we see that Fn divides Fn`k ´ 2, so d divides 2 and hence d is 1 or 2.

Since all Fermat numbers are odd, d “ 1.

Exercise 2.4.7 (Mersenne numbers). If m ą 1 and am ´ 1 is prime, then a “ 2 and
m is prime.
Indeed: a´ 1|am ´ 1 so if a ‰ 2, a´ 1 ą 1 and am ´ 1 is not prime. Suppose now that
m is not prime write m as m “ pq where 0 ă p ă m and 0 ă q ă m, ap ´ 1|papqq ´ 1
and am ´ 1 is not prime.

Integers of the form Mp “ 2p´1, where p is a prime, are called Mersenne numbers
after Mersenne who studied them in 1644; those which are called Mersenne prime.
For p “ 2, 3, 5, 7, the Mersenne numbers Mp “ 3, 7; 31; 127 are indeed prime, but M11 “

2047 “ 23 ˆ 89 is not prime, so Mp is not prime for every prime p. At the time of
writing, 35 Mersenne primes have been found, the latest being M1257787 and M1398269
(discovered in 1996 by David Slowinski and Joel Armeugaud respectively, with the aid
of computers). As in the case of the Fermat primes, it is not known whether there
are finitely or infinitely many Mersennes primes. But we can also prove as for Fermat
primes that two distinct Mersenne number are coprime.
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Chapter 3

Euclidean division, Bezout theorem,
linear diophantine equations

3.1 Euclidean division

We recall the following lemma establishing the Euclidean division, which is intrinsic
in our mind.

Lemma 3.1.1. Let a and b be integers, a ‰ 0. There exists unique integers q and r
such that

a “ bq` r

with 0 ď r ă |a|.

Proof. The proof consists of two parts: first, the proof of the existence of q and r, and
second, the proof of the uniqueness of q and r.

— Existence
Consider first the case b ă 0. Setting b1 “ ´b and q1 “ ´q, the equation a “ bq`r
may be rewritten a “ b1q1 ` r and the inequality 0 ď r ă |b| may be rewritten
0 ď r ă |b1|. This reduces As a consequence, without loss of generality one can
suppose that b ą 0.
Now, if a ă 0 and b ą 0, setting a1 “ ´a, q1 “ ´q´ 1 and r1 “ b´ r, the equation
a “ bq ` r may be rewritten a1 “ bq1 ` r1 and the inequality 0 ď r ă b may be
rewritten 0 ď r1 ă b. Thus the proof of the existence is reduced to the case a ě 0
and b ą 0 and we consider only this case in the remainder of the proof.
Let q1 and r1, both nonnegative, such that a “ bq1 ` r1, for example q1 “ 0 and
r1 “ a. If r1 ă b, we are done. Otherwise q2 “ q1 ` 1 and r2 “ r1 ´ b satisfy
a “ bq2 ` r2 and 0 ă r2 ă r1. Repeating this process one gets q “ qk and r “ rk
such that a “ bq ` r and 0 ď r ă b. Indeed prnqnPN is a decreasing sequence of
positive integer so the process must terminates.
This proves the existence and also gives a simple division algorithm to compute
the quotient and the remainder. However this algorithm needs q steps and is thus
not efficient.

21
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— Uniqueness
Suppose there exists q, q1, r, r1 with 0 ď r, r1 ă |b| such that a “ bq ` r and
a “ bq1 ` r1. Adding the two inequalities 0 ď r ă |b| and ´|b| ă ´r1 ď 0 yields
´|b| ă r´ r1 ă |b|, that is |r´ r1| ă |b|.
Subtracting the two equations yields: bpq1´ qq “ pr´ r1q. Thus |b| divides |r´ r1|.
If |r ´ r1| ‰ 0 this implies |b| ă |r ´ r1|, contradicting previous inequality. Thus,
r “ r1 and bpq1 ´ qq “ 0. As b ‰ 0, this implies q “ q1, proving uniqueness.

�

Example 3.1.2. Let a “ 13, b “ 100. Then 100 “ 13ˆ 7` 9 (i.e. q “ 7, r “ 9).

3.2 Euclidean algorithm

In school we have learnt various methods of computing the G.C. D. and the L. C.
M. of a given of integers. Property p4q suggests a useful, simple and yet less commonly
used way of computing the G. C. D. by the Euclidean algorithm. An algorithm is
a definite procedure for solving problems or performing tasks. Let first state a simple
but essential lemma for establishing the Euclidean Algorithm.

Lemma 3.2.1. If a, b, q, r are integers and a “ bq` r, then gcdpa, bq “ gcdpb, rq.

Proof. Any common divisor of b and r also divides qb` r “ a; similarly, since r “ a´qb,
it follows that any common divisor of a and b divides r. Thus two pair a, b and b , r
have the same common divisors, so they have the same greatest common divisor. �

We can now describe the Euclidean algorithm. For simplicity we assume that we are
going to find the G. C. D. to two positive integers.

Theorem 3.2.2. Let a and b be positive integers, a ą b. Then we apply a series of
divisions as follows.

a “ bq0 ` r1 0 ď r1 ă b,
b “ r1q1 ` r2 0 ď r2 ă r1,

r1 “ r2q2 ` r3 0 ď r3 ă r2,
.
.
.

rn´2 “ rn´1qn´1 ` rn 0 ă rn ă rn´1,
rn´1 “ rnqn.

The process of division comes to an end when rn`1 “ 0. The integer rn is the G. C. D.
of a and b.
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Proof. The idea is to keep repeating the division algorithm. We have:

a “ bq1 ` r1, 0 ď r1 ă b, gcdpa, bq “ gcdpb, r1q,
b “ r1q2 ` r2, 0 ď r2 ă r1, gcdpb, r1q “ gcdpr1, r2q,

r1 “ r2q3 ` r3, 0 ď r3 ă r2, gcdpr1, r2q “ gcdpr2, r3q,
.
.
.

rn´2 “ rn´1qn ` rn, 0 ď rn ă rn´1, gcdprn´2, rn´1q “ gcdprn´1, r´ nq
rn´1 “ rnqn`1, gcdprn´1, rnq “ rn

In fact, prkqk constitute a sequence strictly decreasing of positive integer, this insure
that there is an n such that rn “ 0. Therefore

gcdpa, bq “ gcdpb, r1q “ gcdpr1, r2q “ ...gcdprn´2, rn´1q “ gcdprn´1, rnq “ rn.

�

Example 3.2.3. We want to find the G. C. D. of 2445 and 652. We have

2445 “ 652ˆ 3` 489
652 “ 489ˆ 1` 163
489 “ 163ˆ 3

Then by this Euclidean algorithm, we get that gcdp2445, 652q “ 163.

3.3 Bezout’s identity

The following result uses Euclid’s algorithm to give a simple expression for d “
gcdpa, bq in terms of a and b:

Theorem 3.3.1. Let a and b be integers with gcdpa, bq “ d. There exist integers u and
v such that

au` bv “ d.

Such u, v can be obtained by backward tracing of the Euclidean divisions in finding the
G. C. D.

Proof. Let apply the Euclidean algorithm to a and b, we have the following series of
division

a “ bq0 ` r1 0 ă r1 ă b,
b “ r1q1 ` r2 0 ă r2 ă r1,

r1 “ r2q2 ` r3 0 ă r3 ă r2,
.
.
.

rn´2 “ rn1qn´1 ` rn 0 ă rn ă rn´1,
rn´1 “ rnqn.



24CHAPTER 3. EUCLIDEANDIVISION, BEZOUT THEOREM, LINEARDIOPHANTINE EQUATIONS

such that rn “ d and rn`1 “ 0.
Then we notice first that

d “ rn´2 ´ rn´1qn´1

Then, we have
d “ rn´2vn ` rn´1un

with vn “ 1 and un “ ´qn´1.
Injecting the following in the previous equality,

rn´1 “ rn´3 ´ rn´2qn´2

we find two integer un´1 and vn´1

d “ rn´3vn´1 ´ rn´2un´1

So that reiterating the process until the top of the Euclidean algorithm, we finally find
integers u and v such that

au` bv “ d.

This is the process is known as the extended Euclidean algorithm. �

Theorem 3.3.2. Let a and b be integers (not both 0) with greatest common divisor d.
Then, an integer c has the form ax` by for some x, y P Z if and only if c is a multiple
of d. In particular, d is the least positive integer of the form ax` by (x, y P Z).

Proof. If c “ ax` by where x, y P Z, then since d divides a and b, from Theorem 2.1.4,
implies that d divides c. Conversely, if c “ de for some integer e, then by the previous
theorem, by writing d “ au ` bv, we get c “ due ` bve “ ax ` by, where x “ ue and
y “ ve are both integers. Thus the integers of the form ax`by (x, y P Z) are multiple of
d, and the least positive integers of this form is the least positive multiple of d, namely
d itself. �

The next corollary follows easily.

Corollary 3.3.3. Two integers a and b are coprime if and only if there exist integers
x and y such the

ax` by “ 1.

Example 3.3.4. Take the example of finding the G. C. D. of 2445 and 652 again.
Again by the Euclidean algorithm, we have:

2445 “ 652ˆ 3` 489
652 “ 489ˆ 1` 163
489 “ 163ˆ 3

Applying the extended Euclidean algorithm, we obtain:

163 “ 652´ 489
“ 652´ p2445´ 652ˆ 3q
“ 652ˆ 4´ 2445
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We see that
163 “ 2445ˆ p´1q ` 652ˆ 4

as desired.

Thanks to the previous theorem, we obtain the next theorem which gives some basic
properties of G. C. D. and L. C. M..

Corollary 3.3.5. Let a, b, c and m be non-zero integers. Then

1. gcdpma,mbq “ |m|gcdpa, bq.
2. gcdpa,mq “ gcdpb,mq “ 1 if and only if gcdpab,mq “ 1,

3. c|ab and gcdpb, cq “ 1 imply c|a,

4. a|c, b|c and gcdpa, bq “ 1 imply ab|c
5. gcdpa, bq “ gcdpb, aq “ gcdpa, b`maq,
6. gcdpa, bqlcmpa, bq “ |ab|.

Proof. 1. First, we have m¨gcdpa, bq|ma and m¨gcdpa, bq|mb. Thus, m¨gcdpa, bq|gcdpma,mbq.
By Bezout theorem, there are integers x and y such that ax`by “ gcdpa, bq. Mul-
tiplying by m, we get max`mby “ m ¨ gcdpa, bq. So that gcdpma,mbq|m ¨ gcdpa, bq.

2. If gcdpab,mq “ 1 then there are integers x and y such that abx`my “ apbxq`my “
bpaxq `my “ 1. Thus gcdpa,mq “ gcdpb,mq “ 1. Suppose now that gcdpa,mq “
gcdpb,mq “ 1 then there are integers x, y, x1, y1 such that ax`my “ bx1`my1 “ 1,
then multiplying the equation one gets gcdpax ` myqgcdpbx1 ` my1q “ 1, then
abpxy1q `mpybx1 ` ymy1 ` axy1q “ 1. Thus, gcdpab,mq “ 1.

3. Suppose that c|ab and gcdpb, cq “ 1 then there are integers x and y such that
1 “ bx ` cy. Multiplying by a, we obtain a “ abx ` acy, since c|abx and c|acy,
then c|a.

4. We know that since gcdpa, bq “ 1, there are integers x and y such that ax`by “ 1.
Moreover, since a|c and b|c, there are integers e and f such that c “ ae and c “ b f .
Then c “ cax` cby “ b f ax` aeby “ abp f x` eyq. Thus ab|c as required.

5. gcdpa, bq|a and gcdpa, bq|b then also gcdpa, bq|gcdpa, b ` maq. We have gcdpa, bq|a
and gcdpa, bq|b ` ma. By definition, gcdpa, b ` maq|gcdpa, bq. Then gcdpa, bq “
gcdpa, b`maq.

6. Suppose that a and b are positive for simplicity. Let e “ a{gcdpa, bq and f “
b{gcdpa, bq, then ab{gcdpa, bq “ gcdpa, bqe ¨ gcdpa, bq f {gcdpa, bq “ gcdpa, bqe f “
a f “ eb. Thus, a|pab{gcdpa, bqq and b|pab{gcdpa, bqq. Let now consider an integer
m such that a|m and b|m. We know that there are integers x and y such that
gcdpa, bq “ ax ` by then m ¨ gcdpa, bq “ cax ` cby, but ab|cax and ab|cby, so
ab|m ¨ gcdpa, bq, in particular ab{gcdpa, bq|m. So that lcmpa, bq “ ab{gcdpa, bq.

�

Example 3.3.6. Prove that the fraction p21n ` 4q{p14n ` 3q is irreducible for every
natural number n.
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Solution
We have

gcdp21n` 4, 14n` 3q “ gcdp7n` 1, 14n` 3q “ gcdp7n` 1, 1q “ 1

for every natural number n. This means that 21n ` 4 and 14n ` 3 have no common
divisor and hence the fraction irreducible.

3.4 Application: linear diophantine equations.

Theorem 3.4.1. Let a, b and c be integers, with a and b not both 0, and let d “ gcdpa, bq.
Then the equation

ax` by “ c

has an integer solution x, y if and only if c is a multiple of d, in which case there are
infinitely many solutions. There are the pairs

x “ x0 `
bn
d
, y “ y0 ´

an
d
pn P Zq,

where x0, y0 is any particular solution.

Proof. The fact that there is a solution if and only if d|c is merely a restatement of
Theorem 3.3.2. Then, let x0, y0 be a particular solution found by the extended euclidian
algorithm. So,

ax0 ` by0 “ c.

If we put

x “ x0 `
bn
d
, y “ y0 ´

an
d

where n is any integer, then

ax` by “ a
`

x0 `
bn
d
˘

` b
`

y0 ´
an
d
˘

“ ax0 ` by0 “ c,

so x, y is also a solution. (Note that x and y are integers since d divides b and a
respectively.) This gives us infinitely many solutions, for different integers n. To show
that these are the only solutions, let x, y be any integer solution, so ax` by “ c. Since
ax` by “ c “ ax0 ` by0 we have

apx´ x0q ` bpy´ y0q “ 0,

so dividing by d we get
a
d
px´ x0q “ ´

b
d
py´ y0q.

Now a and b are not both 0, and we can suppose that b ‰ 0 (if not, interchange the
roles of a and b in what follows). Since b{d divides each side of the previous equality
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and it is coprime to a{d by Theorem 3.3.5, a., it divides x ´ x0 by Theorem 3.3.5, c.
Thus x´ x0 “ bn{d for some integer n, so

x “ x0 `
bn
d
.

Substituting back for x´ x0, we get

´
b
d
py´ y0q “

a
d
px´ x0q “

a
d
.
bn
d
,

So dividing by b{d (which is non-zero) we have

y “ y0 ´
an
d

. �

Example 3.4.2. Find all the integer solutions of

56x` 76y “ 40 pEq

Solution: Run the EEA to find GCD and particular solution for the equation. From
the EA, we have:

72 “ 56ˆ 1` 16
56 “ 16ˆ 3` 8
16 “ 8ˆ 2` 0

Then gcdp56, 72q “ 8.
From the EEA we get :

78 “ 56´ 16ˆ 3
“ 56´ p72´ 56q ˆ 3
“ 4ˆ 56´ 3ˆ 72

Then
40 “ 8ˆ 5 “ 56ˆ 20´ 15ˆ 72.

This give x0 “ 20 and y0 “ ´15 as a particular solution.
Let px, yq be a general solution, we have then:

56ˆ x` 72ˆ y “ 40 “ 56ˆ x0 ` 72ˆ y0.

Then
7px´ x0q “ 9py´ y0q

Since p7, 9q “ 1 then by Euclid’s lemma, since 7 divides 9py ´ y0q, 7 divides py ´ y0q.
So, there is an integer k such that y´ y0 “ 7k. Injecting this equation to the later one,
we obtain x´ x0 “ 9k. So, a general solution is of the form

"

x “ 9k` 20
y “ 7k´ 15

where k is a integer.
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Chapter 4

The fundamental theorem of
arithmetic

4.1 The theorem

Lemma 4.1.1. Let p be a prime, and let a and b any integers. Then

1. either p divides a, or a and p are coprime;

2. p divides ab if and only if p divides a or p divides b.

Proof. 1. By definition, gcdpa, pq divides p so it is either 1 or p, since p is prime. If
gcdpa, bq “ p, in particular p|a. Otherwise, gcdpa, bq “ 1, and a and b are coprime.

2. If p | a or p | b, then p | ab. Conversely, if p|ab. Suppose that p - a, then
gcdpa, pq “ 1, by 1. So there are integers x and y such that ax ` py “ 1.
Multiplying by b, we obtain bax ` bpy “ b. But then, p|bax by assumption and
clearly, p|bpy. Thus p|b.

�

Remark 4.1.2. Both parts of the lemma can fail if p is not prime: take p “ 4, a “ 6
and b “ 10, for instance.

We can extend by induction 2. of the previous lemma to product of any numbers of
factors.

Corollary 4.1.3. If p is prime and p divides a1...ak, then p divides ai for some i.

Proof. We use induction on k. If k “ 1 then the assumption is that p|a1, so the conclusion
is automatically true (with i “ 1). Now assume that k ą 1 and that the result is proved
for all products of k ´ 1 factors ai. If we put a “ a1...ak´1 and b “ ak, then a1...ak “ ab
and so p|ab. By the previous lemma part 2., it follows that p|a or p|b. In the first case,
we have p|a1....ak´1, so the induction hypothesis implies that p|ai for some i “ 1, ...k´ 1;
in the second case we have p|ak. Thus in either case p|ai for some i, as required. �

The next result, known as the fundamental theorem of arithmetic, explains why
prime numbers are so important: they are the basic building blocks out of which all

29
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integers can be constructed. We have seen that 0 and 1 are enough to build all the
integers via addition. We have that prime numbers are enough to build all the integer
via the multiplication.

Theorem 4.1.4. Each integer n ą 1 has a prime-power factorization

n “ pe1
1 ...p

ek
k

where p1, ... , pk are distinct primes and e1, ... , ek are positive integers; this factoriza-
tion is unique, apart from permutations of the factors.

Proof. First we use the principle of strong induction to prove the existence of prime-
power factorizations. Since we are assuming that n ą 1, we start the induction with
n “ 2. As usual, this case is easy: the required factorization is simply n “ 21. Now
assume that n ą 2 and that every integer strictly between 1 and n has a prime-power
factorization. If n is prime then n “ n1 is the required factorization of n, so we can
assume that n is composite, say n “ ab where 1 ă a, b ă n. By the induction hypothesis,
both a and b have prime factorizations, so by substituting these into the equation n “ ab
and then collecting together powers of each prime pi, we get a prime-power factorization
of n.
Now we prove uniqueness. Suppose that n has prime-power factorization

n “ pe1
1 ...p

ek
k “ q f1

1 ...q
fl
l

where p1, ... , pk and q1, ..., ql are two sets of distinct primes, and the exponents ei and
f j are all positive. The first factorization shows that p1|n, then applying the previous
corollary to the second factorization we obtain p1|q j for some j “ 1, ..., l. By permuting
(or renumbering) the prime-powers in the second factorization we may assume that
j “ 1, so that p1|q1. Since q1 is prime, it follows that p1 “ q1, so canceling this prime
from the two factorizations we get:

pe1´1
1 pe2

2 ...p
ek
k “ q f1´1

1 q f2
2 ..q

fl
l

We keep repeating this argument, matching primes in the two factorizations and then
canceling them, until we run out of primes in one of factorizations. If one of factorization
runs out before the other, then at that stage our reduced factorizations express 1 as
a product of primes pi or q j, which is impossible since pi, q j ą 1. It follows that both
factorizations run out of primes simultaneously, so we must have cancelled the ei copies
of each pi with the same number p fiq of copies of qi; thus k “ l, each pi “ qi (after
permuting factors), and each ei “ fi so we have proved uniqueness. �

Remark 4.1.5. The previous theorem implies that the set of all the primes generates
all the integers number, the prime are ’smallest’ integers in relation of the division
operation. That is a reason why there are so important in arithmetics.

Definition 4.1.6. The following notation is often useful: if p is prime, we write pe||n
to indicate that pe is the highest power of p dividing n, that is, pe divides n but pe`1 does
not.
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Example 4.1.7. For instance, 23||200, 52||200, and p0||200 for all prime p ‰ 2, 5.

Remark 4.1.8. The prime-power factorizations allows us to calculate products, quo-
tients, powers, greatest common divisors and least common multiples. Suppose that
integers a and b have factorizations

a “ pe1
1 ...p

ek
k and b “ p f1

1 ...p
fk
k

(where we have ei, fi ě 0 to allow for the possibility that some prime pi may divide one
but not both of a and b). Then we have

ab “ pe1` f1
1 ...pek` fk

k ,

a{b “ pe1´ f1
1 ...pek´ fk

k pi f b|aq,
am “ pme1

1 ...pmek
k ,

gcdpa, bq “ pminpe1, f1q
1 ...pminpek, fkq

k

lcmpa, bq “ pmaxpe1, f1q
1 ...pmaxpek, fkq

k

where minpe, f q and maxpe, f q are the minimum and maximum of e and f . Unfortu-
nately, finding the factorization of a large integer can take a very long time!
Then we note that if pe||a and p f ||b then pe f ||ab, pe´ f ||a{b (if b|a), pme||am, ...

Example 4.1.9. Find the prime-power factorization of 132, of 400 and of 1995. Hence
find gcdp132, 400q, gcdp132, 1995q, gcdp400, 1995q, gcdp132, 400, 1995q.
Solution:

132 “ 22 ˆ 3ˆ 11
400 “ 24 ˆ 52

1995 “ 3ˆ 5ˆ 7ˆ 19
gcdp132, 400q “ 22

gcdp132, 1995q “ 3
gcdp400, 1995q “ 5

gcdp132, 400, 1995q “ 1

4.2 Applications

As first application, the following result looks rather obvious and innocuous but it
is extremely useful, especially in the case m “ 2:

Lemma 4.2.1. If a1, ... ,ar are mutually coprime positive integers (every two distinct
of such integers are coprime), and a1, ..., ar is an m-th power for some integer m ě 2,
then each ai is an m-th power.

Proof. It follows from the above formula for am that a positive integer is an m-th power
if and only if the exponent of each prime in its prime-power factorization is divisible by
m. If a “ a1...ar, where the factors ai are mutually coprime then each pe appearing in
the factorization of any ai also appear the full power of p in the factorization of a; since
a is an m-th power, e is divisible by m, so ai is an m-th power. �
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Remark 4.2.2. Of course, it is essential to assume that a1, ..., ar are mutually coprime
here: for instance, neither 24 nor 54 are perfect square, but their product 24 ˆ 54 “
1296 “ 362 is a perfect square.

We can use also the prime-power factorizations to generalize the classic result (known
to Pythagoreans in the 5-th century BC) that

?
2 is irrational.

Definition 4.2.3. A rational number is a real number of the form a{b, where a and
b are integers and b ‰ 0; all the other real numbers are irrational. A perfect square
is an integer of the form m “ n2, where n is an integer.

Corollary 4.2.4. If a positive integer m is not a perfect square, then
?

m is irrational.

Proof. It is sufficient to prove the contrapositive, that if
?

m is rational then m is a
perfect square. Suppose that

?
m “ a{b where a and b are positive integers. Then

m “ a2
{b2

If a and b have prime-power factorizations

a “ pe1
1 ...p

ek
k and b “ p f1

1 ...p
fk
k

as above, then

m “ p2e1´2 f1
1 ...p2ek´2 fk

k

must be the factorization, and ei ´ fi ě 0 for each i, so

m “ ppe1´ f1
1 ...pek´ fk

k q
2

is a perfect square. �

Another application is the Euclid’s theorem which says that there are infinitely many
primes. It is one of the oldest and most attractive in mathematics. We have seen some
proofs already of the result via the Fermat’s numbers and the Mersenne numbers. We
might see other proofs during this course, to illustrate important techniques in number
theory. (BIt is useful, rather than wasteful, to have several proofs of the same result,
since one may be able to adapt these proofs to give different generalizations.)

Theorem 4.2.5. There are infinitely many primes.

Proof. The proof is by contradiction: we assume that there are only finitely many
primes, and then we obtain a contradiction from this, so it follows that there must be
infinitely many primes.
Suppose then that the only primes are p1, p2, ..., pk. Let

m “ p1p2...pk ` 1

Since m is an integer greater than 1, the Fundamental Theorem of Arithmetic implies
that it is divisible by some prime p (this includes the possibility that m “ p). By our
assumption, this prime p must be one of the primes p1, p2, ..., pk, so p divides their
product p1p2...pk. Since p divides both m and p1p2...pk, it divides m ´ p1p2...p ´ k “ 1,
which is impossible. We deduce that our initial assumption was false, so there must be
infinitely many primes. �
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Another open question concerning prime numbers is Goldbach’s conjecture, that
every even integer n ě 4 is the sum of two primes: thus 4 “ 2` 2, 6 “ 3` 3, 8 “ 3` 5,
and so on. The evidence for this is quite strong, but the best general result we have in
this direction is a theorem of Chen Jing-Run (1973) that every sufficiently large even
integer has the form n “ p ` q where p is prime and q is the product of at most two
primes. Similarly, Vinogradov proved in 1937 that every sufficiently large odd integer
is the sum of three primes, so it immediately follows that every sufficiently large even
integer is the sum of at most four primes.

4.3 Primality-testing and factorization

There are two practical problems which arise from the theory we have considered:

1. How do we determine whether a given integer n is prime?

2. How do we find the prime-power factorization of a given integer n?

Lemma 4.3.1. An integer n ą 1 is composite if and only if it is divisible by some
p ď

?
n.

Proof. If n is divisible by such a prime p, then since 1 ă p ď
?

n ă n, it follows that n
is composite. Conversely, if n is composite then n “ ab where 1 ă a ă n and 1 ă b ă n;
at least one of a and b is less than or equal to

?
n (if not, ab ą n), and this factor will

be divisible by a prime p ď
?

n, which then divides n. �

Example 4.3.2. We can see that 97 is prime by checking that it is divisible by none of
the primes p ď

?
97, namely 2, 3, 5 and 7. This method requires us to test whether an

integer n is divisible by various prime p. For certain small primes p there are simple
ways of doing this, based on properties of the decimal number system.

Remark 4.3.3. In order to test the divisibility, we can use here all the techniques that
we have seen before for divisibility by 2, 3, 5 and 11. Otherwise, one simply has to
divide p into n and see whether or not the remainder is 0.

This method of primality-testing is effective for fairly small integers n, since there are
not too many primes p to consider, but when n becomes large it is very time consum-
ing: by the Prime Number Theorem which says that the number of prime integers less
than some integer x is equivalent to x{lnpxq, the number of prime p ď

?
n is given by

equivalent to
?

n{lnp
?

nq “ 2
?

n{lnpnq.
In cryptography (the study of secret code), one regularly uses integers with several hun-
dred decimal digits, if n » 10100, for example, then this method would involve testing
about 8ˆ 1047 primes p, and even the fastest available supercomputers would take far
longer than the current estimate for the age of the universe (about 15 billion year) to
complete this task! Fortunately there are alternative algorithms (using some very so-
phisticated number theory) which will determine primality for very large integers much
more efficiently. Some fastest of these are probabilistic algorithms, such as the Solovay-
Strassen test, which will always detect a prime integer n, but which may incorrectly
declare a composite number n as veing prime; this may appear to be disastrous fault,
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but in fact the probability of such an incorrect outcome is so low (far lower than the
probability if computational error due to a machine fault) that for most practical pur-
poses these tests are very reliable.
The sieve of Eratosthenes is a systematic way of compiling a list of the primes up to
a given integer N. First, we list the integer 2, 3, ... N in increasing order. Then we
underline 2 (which is prime) and cross out all the proper multiples 4, 6, 8, ... of 2 in the
list (since these are composite). The first integer which is neither underlined nor crossed
out 3: this is prime, so we underline it and then cross out all its proper multiples 6, 9,
12, ... At the next stage we underline 5 and cross out 10, 15, 20... We continue like this
until every integer in the list is either underline or crossed out. At each stage, the first
integer which is neither underline nor crossed must be a prime, for otherwise it would
have been crossed out, as a proper multiple of an earlier prime; thus only primes are
underlined at some stage, so when the process terminated the underlined numbers are
precisely the prime p ď N. (We can actually stop earlier, when the proper multiples of

all the primes p ď
?

N have been crossed out, since the previous lemma implies that
every remaining integer in the list must be prime.)

Our second practical problem, factorization, is apparently much harder than primality-
testing. (It cannot be any easier, since the prime-power factorization of an integer
immediately tells us whether or not it is prime). In theory, we could factorize any
integer n by testing it for divisibility by the primes 2, 3, 5, ... until a prime factor
p is found; we then replace n with n{p and continue this process of n{p is found;
eventually, we obtain all the prime factors of n with their multiplicities. This algorithm
is quite effective for small integers, but when n is large we meet the same problem as
in primality-testing, that there are just too many possible prime factors to consider.
There are, of course, more subtle approaches to factorization, but at present the fastest
known algorithms and computers cannot, in practice, factorize integers several hundred
digits long (though nobody has yet proved that an efficient factorization algorithm will
never be found). A very effective cryptographic system (known as the RSA public key
system, after its inventors Rivest, Shamir and Adleman, 1978) is based on the fact that
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it is relatively easy to calculate the product n “ pq of two very large primes p and q,
while it is extremely difficult to reverse this process and obtain the factors p and q,
while it is extremely difficult to reverse this process and obtain the factors p and q from
n.
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Chapter 5

Arithmetic Functions

5.1 Definitions, examples

In number theory, we very often encounter functions which assume certain values on
N. Well-known example are,

1. The unit function e define by ep1q “ 1 and epnq “ 0 for all n ą 1.

2. The identity function E defined by Epnq “ 1 for all n PN.

3. The power functions Ik defined by Ikpnq “ nk for all n P N. In particular,
E “ I0.

4. The number of prime divisors of n, denoted by Ωpnq.

5. The number of distinct prime divisors of n, denoted by ωpnq.

6. The divisor sums σl defined by

σlpnq “
ÿ

d|n

dl

In particular, we write σ “ σ1, the sum of divisor and σ0, the number of divisors.

7. The Euler φ-function or totient function

φpnq “ 7td PN|gcdpd,nq “ 1 and d ď nu

8. Ramanujan’s function τpnq defined by

8
ÿ

n“1

τpnqxn
“ x

8
ź

k“1

p1´ xk
q

24

9. The ”sum of squares” function rdpnq given by the number of solutions x1,...,xd to
n “ x2

1 ` ...` x2
d.

In general,

Definition 5.1.1. An arithmetic function is a function f :NÑ C.

39



40 CHAPTER 5. ARITHMETIC FUNCTIONS

Of course this is a very broad concept. Many arithmetic function which occur natu-
rally have interesting additional properties. One of them is the multiplicative property.

Definition 5.1.2. Let f be an arithmetic function with f p1q “ 1. Then f is called
multiplicative if f pmnq “ f pmq f pnq for all m, n with gcdpm,nq “ 1 and strongly
multiplicative if f pmnq “ f pmq f pnq, for all m, n.

It is trivial to see that example e, E, Il, 2Ω are strongly multiplicative and that 2ω
is multiplicative. In this chapter we will see that σl and φ are multiplicative. The
multiplicative property of Ramanujan’s τ is a deep fact based on properties of so-called
modular forms. It was first proved by Mordell in 1917. As an aside we also mention
the remarkable congruence τpnq “ σ11pnq mod 691 for all n PN.

Theorem 5.1.3. 1. σl is a multiplicative function.

2. Let n “ pk1
1 ...p

kr
r . Then

σlpnq “
ź

i

pi
lpki`1q ´ 1
pl ´ 1

Proof. 1. The proof is based on the fact that if d|mn and gcdpm,nq “ 1 then d can
be written uniquely in the form d “ d1d2 where d1|m and d2|n. In particular,
d1 “ gcdpm, dq and d2 “ gcdpn, dq. We have

σlpmnq “
ÿ

d|mn

dl
“

ÿ

d1|m,d2|n

pd1d2q
l
“ p

ÿ

d1|m

dl
1qp

ÿ

d2|n

dl
2q “ σlpmqσlpnq

2. It suffices to show that σlppkq “ pplpk`1q´ 1q{ppl´ 1q for any prime power pk. The
statement then follows from the multiplicative property of σl. Note that,

σlppk
q “ 1` pl

` p2l
` ...` pkl

“
plpk`1q ´ 1

pl ´ 1

�

A very ancient problem is that of perfect numbers.

Definition 5.1.4. A perfect number is a number n P N which is equal to the sum
of its divisors less than n. Stated alternatively, n is perfect if σpnq “ 2n.

Examples of perfect numbers are 6, 28, 496, 8128, 33550336,.... It is not known
whether there are infinitely many. It is not also known if there exist odd perfect num-
bers. If they do, they must be at least 10300. For even perfect numbers there exists a
characterization given by Euclid and Euler.

Theorem 5.1.5. Let n be even. Then n is perfect if and only if it has the form
n “ 2k´1p2k ´ 1q with 2k ´ 1 prime.

Proof. Suppose n “ 2k´1p2k ´ 1q with 2p ´ 1 prime. Then it is straightforward to check
that σpnq “ 2n.
Suppose that n is perfect. Write n “ 2k´1m, where m is odd and k ě 2. Then,

σpnq “ σp2k´1mq “ σp2k´1
qσpmq “ p2k

´ 1qσpmq



5.2. EULER’S FUNCTION 41

not the other hand, n is perfect, so σpnq “ 2n, which implies that 2km “ p2k ´ 1qσpmq.
Hence

σpmq “ m`
m

2k ´ 1

Since σpmq is integral, 2k ´ 1 must divide m. Since k ě 2 we see that m and m{p2k ´ 1q
are distinct divisor of m. Moreover , they must be the only divisors since their sum is
already σpmq. This implies that m is prime and m{p2k ´ 1q “ 1 that is m “ 2k ´ 1 is
prime. �

Remark 5.1.6. 1. We recognize the Mersenne primes (that is the number of the
form 2k ´ 1 which are also prime) in the theorem.

2. An equally classical subject is that of amicable numbers that is, pairs of num-
bers m, n such that n is the sum of all the divisors of m less than m and vice versa.
In other words, m ` n “ σpnq and n `m “ σpmq. The pair 220, 284 was known
to the ancient Greeks. Euler discovered some 60 pairs (for example 11498355,
12024045) and later computer searches yielded several thousands of new pairs,
some of which are extremely large.

5.2 Euler’s function

Definition 5.2.1. We define φpnq “ ta P t1, ....,nu|gcdpa,nq “ 1u. This function φ is
called the Euler’s function. For small n, its values are as follows.

n 1 2 3 4 5 6 7 8 9 10 11 12
φpnq 1 1 2 2 4 2 6 4 6 4 10 4

Theorem 5.2.2. If n ě 1, then
ÿ

d|n

φpdq “ n

Proof. Let S “ t1, 2, ...,nu and for each d dividing n let Sd “ ta P S|gcdpa,nq “ n{du.
These sets Sd partition S into disjoint subsets, since if a P S then gcdpa,nq “ n{d for
some unique divisor d of n. Thus

ř

d|n |Sd| “ |S| “ n, so it is sufficient to prove that

|Sd| “ φpdq for each d. Now

a P Sd ô a P Z with 1 ď a ď n and gcdpa,nq “ n{d.

If we define a1 “ ad{n for each integer a, then a1 is an integer since n{d “ gcdpa,nq
divides a. Dividing on the right-hand side by n{d, we can therefore rewrite the above
condition as

a P Sd ô a “ n{da1 where a1 P Z with 1 ď a1 ď d and gcdpa1dq “ 1.

Thus |Spdq| is the number of integer a1, between 1 and d inclusive which are coprime to
d; this is the definition of φpdq, so |Spdq| “ φpdq as required. �
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Example 5.2.3. If n “ 10, then the divisors are d “ 1, 2, 5 and 10. We find that
S1 “ t10u, S2 “ t5u, S5 “ t2, 4, 6, 8u and S10 “ t1, 3, 7, 9u containing φpdq “ 1, 1, 4
and 4 elements respectively. These four sets form a partition of S “ t1, 2, ..., 10u, so
φp1q ` φp2q ` φp5q ` φp10q “ 10.

5.3 Convolution, Möbius inversion

Definition 5.3.1. Let f and g be two arithmetic functions. Their convolution prod-
uct denoted by f ‹ g is defined by

p f ‹ gqpnq “
ÿ

d|n

f pdqgpn{dq

It is an easy exercise to verify that the convolution product is commutative and
associative. Moreover, f “ e‹ f for any f . (Hence arithmetic function form a semigroup
under convolution).

Theorem 5.3.2. The convolution product of two multiplicative functions is again mul-
tiplicative.

Proof. Let f , g be two multiplicative functions. We have trivially that p f ‹ gqp1q “
f p1qgp1q. For any m, n PN with gcdpm,nq “ 1 we have

p f ‹ gqpmnq “
ř

d|mn f pdqgpmn{dq
“

ř

d1|m
ř

d2|n f pd1d2qgpm{d1n{d2q

“ p
ř

d1|m f pd1qgpm{d1qqp
ř

d2|n f pd2qgpn{d2qq

“ p f ‹ gqpmqp f ‹ gqpnq

�

Notice that for example σl “ E‹ Il. The multiplicative property of σl follows directly
from the multiplicativity of E and Il. We now introduce an important multiplicative
function.

Definition 5.3.3. The Möbius function µpnq is defined by µp1q “ 1, µpnq “ 0 if n
is divisible by a square ą 1 and µpp1...ptq “ p´1qt for any product of distinct primes p1,
... , pt.

Notice that µ is a multiplicative function. Its importance lies in the following theo-
rem.

Theorem 5.3.4. ( Möbius inversion) Let f be an arithmetic function and let F be
defined by

Fpnq “
ÿ

d|n

f pdq

Then, for any n PN,

f pnq “
ÿ

d|n

Fpdqµpn{dq
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Proof. More cryptically we have F “ E ‹ f and we must prove that f “ µ ‹F. It suffices
to show that e “ E ‹ µp“ µ ‹ Eq since this implies µ ‹ F “ µ ‹ E ‹ f “ e ‹ f “ f .
The function E ‹ µ is again multiplicative, hence it suffices to compute E ‹ µ at prime
powers pk where k ą 0 and show that it is zero there. Observe,

pE ‹ µqppk
q “

ÿ

d|pk

µpdq “ µp1q ` µppq ` ...` µppk
q “ 1´ 1` 0` ...` 0 “ 0

�

Theorem 5.3.5. Let φ b the Euler φ-function. Then,

1.
n “

ÿ

d|n

φpdq, @n ě 1

2. φ is multiplicative.

3.
φpnq “ n

ź

p|n

p1´ 1{pq

Proof. 1. (Already proven)

2. We have seen in part 1. that I1 “ E ‹ φ. Hence, by Möbius inversion, φ “ µ ‹ I1.
Multiplicativity of φ automatically follows from the multiplicativity of µ and I1.

3. Because of the mutiplicativity of φ it suffices to show that φppkq “ pkp1 ´ 1{pq.
This follows from φppkq “ pI1 ‹ µqppkq “ pk ´ pk´1 “ pkp1´ 1{pq.

�
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Part III

Modular arithmetic on Z
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Chapter 6

Congruences

6.1 Motivation

When we think for example in what will the day of the week in 100 days. We can
get a diary and count 100 days ahead. But, the quicker way is to think that a week is
7 days and every multiple of 7 days from now will be the same day as now, this tell us
to just do the Euclidean division of 100 by 7 and to look at the remainder, that is:

100 “ 7ˆ 14` 2

so the day will be the same as it is two days ahead, and this is easy to determine. So
to solve this problem with n day it enough to just look the remainder of the division of
n by 7.
Consider an integer n, to know if it is odd or even, we can look at remainder of n by
the division by 2. So, there is just two category of integer when we look at them using
the division by 2, there is the even integers of the form 2k for some integer k and the
odd integers of the form 2k` 1, for some integer k.
We can do the same for the division by 4, an if you consider 4k, 4k ` 1, 4k ` 2, 4k ` 3
for any k integer, you cover all the integer. Now lets consider n2, if n is even there is
an integer k such that n “ 2k, then n2 “ 4k and if n is odd, there is an integer k such
that n “ 2k ` 1 then n2 “ p2k ` 1q2 “ 4k2 ` 4k ` 1 “ 4pk2 ` kq ` 1 but then a square
is or of the form 4k or of the form 4k` 1 for some k. In other words, the remainder by
the division 4 is either 0 or 1. BWe are not saying that all the integer of this form are
square, for example 5 is not a square, nevertheless 5 “ 4 ˆ 1 ` 1. Now, can you say if
22051946 is a perfect square without calculator? we know that 4|100 so 4|22051900 so
to see the remainder of the division of 22051900 by 4 it is enough to look at the one of
the division of 46 by 1 but 46 “ 11ˆ 4` 2, so it is not a perfect square.
The previous problems is not rare in arithmetic, there are many problems involving
large integers that can be simplified by a technique called modular arithmetic where
we use congruences in place of equation. The basic idea is to choose a particular integer
n depending on the problem (in the previous example n “ 7 resp. 4), called the
modulus, and replace every integer with its remainder when divided by n. In general,
this remainder is smaller and hence easier to deal with.

47
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6.2 Definition and first properties

Definition 6.2.1. Let n be a positive integer, and let a and b be any integers. We say
that a is congruent to b mod pnq, or a is a residue of b mod pnq, written

a ” b mod pnq

if a and b leave the same remainder when divided n.

(Other notations for this include a ” b pmod nq, a ” b mod n and a ”n b).

To be more precise, we use the division algorithm to put a “ qn` r with a ď r ă n, and
b “ q1n` r1 with 0 ď r1 ă n, and then

we say that a ” b mod pnq if and only if r “ r1.

We will use the notation a ı b mod pnq to denote that a and b are not congruent
mod pnq, that is, that they leave different remainders when divided by n.

Example 6.2.2. The two example of the first section can be translated as:

1. 100 ” 2 mod p7q;
2. 22051946 ” 46 ” 2 mod p4q.

Our first result gives a useful alternative definition of congruence mod pnq.

Lemma 6.2.3. For any field n ě 1 we have a ” b mod pnq if and only if n|pa´ bq

Proof. We can write the Euclidean division of a and b by n, we get a “ qn ` r and
b “ q1n ` r1 with q and q1 integers, 0 ď r ă n and 0 ď r1 ă n. Then we have
a´ b “ pq´ q1qn` pr´ r1q with ´n ă r´ r1 ă n.

pñq Now, if we suppose that a ” b mod pnq then r “ r1 so, r ´ r” “ 0 and
a´ b “ pq´ q1qn, or in other word, n|a´ b.

pðq Suppose that n|pa ´ bq, then n|pa ´ bq ´ pq ´ q1qn “ r ´ r1, that implies that
r´ r1 “ 0 since ´n ă r´ r1 ă n �

We have the congruence relation is an ”equivalence relation” on Z, it is reflexive,
symmetric and transitive or in other word we have the following lemma:

Lemma 6.2.4. For any fixed n ě 1 we have for any a, b and c integers:

1. a ” a mod pnq (reflexivity);

2. if a ” b mod pnq then b ” a mod pnq (symmetry);

3. if a ” b mod pnq and b ” c mod pnq then a ” c mod pnq (transitivity).

Proof. 1. We have n|pa´ aq, for all a.

2. If n|pa´ bq then n|pb´ aq.
3. If n|pa´ bq and n|pb´ cq then n|pa´ bq ` pb´ cq “ a´ c.

�
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It follows that Z can be partitioned into disjoint equivalent classes:

Definition 6.2.5. Let n be an integer. The equivalence class for the relation ” mod
pnq are called congruence classes of a mod pnq. For some a integer,

we denote by ras (or sometimes rasn)

its congruence classes of a mod pnq, that is

ras “ tb P Z|a ” b mod pnqu
“ t...., a´ 2n, a´ n, a, a` n, a` 2n, ...u

Each integer b such that rbs “ ras is called a representative of the class ras.

We denote by Z{nZ the set of all the classes of congruences mod pnq.

Clearly, we obtain the following lemma:

Lemma 6.2.6. Let a and b be integers, if b P ras then ras “ rbs.

Remark 6.2.7. Let n be an integer.

1. BAn element of Z{nZ is a class of elements of Z.

2. BThere is a unique representative of a class of an integer mod n on the set
t0, ...,n´ 1u.

Indeed, for any a integer there exists r P t0, ...,n ´ 1u, such that ras “ rrs, that
is the remainder of the division of a by n (Indeed, r P ras and we can apply the
previous lemma). Moreover, if r and r1 are distinct integers in t0, ...,n´ 1u then
rrs ‰ rr1s. Otherwise, r “ r1 ` tn for some integer t, but then r´ r1 “ tn and this
holds if and only if r “ r1 which contradict the first assumption.

3. By definition, for any a and b integers, ras “ rbs if and only if a ” b mod pnq.

Definition 6.2.8. Let n be an integer. A set of n integers, containing one representative
from each to the n congruence classes in Z{nZ is called a complete set of residues
mod pnq.

The integers 0, ....,n´ 1 are called the least non-negative residues mod pnq.
The integers r such that ´n{2 ă r ď n{2 are the least absolute residue mod pnq.

Remark 6.2.9. 1. The set of all the least non-negative residues t0, ...,n ´ 1u is a
complete set of residues mod pnq. The set of all the least absolute residue mod pnq
(that is t0,˘1,˘2, ...,˘pn´ 1q{2u if n is odd and t0,˘1,˘2, ...,˘n{2´ 1,n{2u if
n is even) is a complete set of residues mod pnq.

2. A sensitive choice of a complete set of residues can easy the calculations consid-
erably. Many times the least non-negative residues are the most convenience, but
the least absolute residues can be more convenient sometimes.

We obtain a canonical description of Z{nZ:
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Lemma 6.2.10. For n an integer,

Z{nZ “ tr0s, r1s, ..., rn´ 1su

Example 6.2.11. Z{2Z “ tr0s, r1su and the class r0s is the set of all the even integers
and the class r1s is the set of all the odd integers.

We want to define an addition ` and a multiplication ¨ operation over the set Z{nZ.
For this, we look at the behavior of the congruence under the addition on Z.

Lemma 6.2.12. For a given n ě 1, if a1 ” a mod pnq and b1 ” b mod pnq then,

a1 ` b1 ” a` b mod pnq
a1 ´ b1 ” a´ b mod pnq
a1 ¨ b1 ” a ¨ b mod pnq

In other words, if a, a1, b and b1 are integers such that ras “ ra1s and rbs “ rb1s then

ra` bs “ ra1 ` b1s,
ra´ bs “ ra1 ´ b1s,
rabs “ ra1b1s.

Proof. Since a1 ” a mod pnq, there is an integer k such that a1 “ a`kn and similarly since
b1 ” b mod pnq there is an integer l such that b1 “ b` ln; then a1˘b1 “ pa˘bq`pk˘ lqn ”
a˘ b mod pnq, and a1b1 “ ab` pal` bk` klnqn ” ab mod pnq. �

The following example illustrate the use of the complete sets of residues and of the
previous lemma.

Example 6.2.13. 1. Let us calculate the least non-negative residue of 28ˆ 33 mod
35.

Using the least absolute residues mod 35, we have 28 ” ´7 mod p35q and 33 ”
´2 mod p35q, so

28ˆ 33 ” p´7q ˆ p´2q mod p35q ” 14 mod p35q

Since 0 ď 14 ă 35, it follows that 14 is the required least non-negative residue.

2. Let us calculate the least absolute residue of 15ˆ 59 mod 75.

We have
15ˆ 59 ” 15ˆ p´16q mod p75q

” ´60ˆ 4 mod p75q
” 15ˆ 4 mod p75q
” 60 mod p75q
” ´15 mod p75q

and since ´75{2 ă ´15 ď 75{2, the required residue is ´15.
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3. Let us calculate the least non-negative residue of 38 mod 13.

38 “ p32q4 “ 94 ” p´4q4 mod p13q
” 162 mod p13q
” 32 mod p13q
” 9 mod p13q

The required residue is therefore 9.

Since n divides m if and only if m ” 0 mod pnq, it follows that problems about
divisibility are equivalent to problems about congruences, and these can sometimes be
easier to solve. Here is a typical example:

Example 6.2.14. Let us prove that apa` 1qp2a` 1q is divisible by 6 for every integer
a.

By taking least absolute residues mod p6q. So, there are 6 case to consider:

1. If a ” 0 mod p6q then apa` 1qp2a` 1q ” 0 mod p6q.
2. If a ” 1 mod p6q then apa`1qp2a`1q ” 1ˆ2ˆ3 mod p6q ” 6 mod p6q ” 0 mod 6.

3. If a ” 2 mod p6q then apa`1qp2a`1q ” 2ˆ3ˆ5 mod p6q ” 6ˆ5 mod p6q ” 0 mod 6.

4. If a ” 3 mod p6q then apa` 1qp2a` 1q ” 3ˆ 4ˆ 7 mod p6q ” 6ˆ 3ˆ 7 mod p6q ”
0 mod 6.

5. If a ” 4 mod p6q then apa`1qp2a`1q ” 4ˆ5ˆ9 mod p6q ” 6ˆ2ˆ5ˆ3 mod p6q ”
0 mod 6.

6. If a ” 5 mod p6q then apa` 1qp2a` 1q ” 5ˆ 6ˆ 11 mod p6q ” 0 mod 6.

This allows us to define addition, subtraction and multiplication.

Definition 6.2.15. Let n be an integer.

1. We define an addition ` over Z{nZ, for any a and b, we put

ras ` rbs :“ ra` bs

Similarly
ras ´ rbs :“ ra´ bs

2. We define a multiplication ¨ over Z{nZ, for any a and b, we put

ras ¨ rbs :“ ra ¨ bs

Remark 6.2.16. BWe cannot define a division congruence class since for some a and
b, a{b is not necessary an integer.

By induction, we have:

Lemma 6.2.17. For any integers a1, ... , an and a,

1. ra1s ` ra2s ` ...` rans “ ra1 ` ...` ans;
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2. ra1s ¨ ra2s ¨ ... ¨ rans “ ra1 ¨ ... ¨ ans;

3. rask “ raks.

Remark 6.2.18. When we work in Z{nZ, we have to be careful before defining an op-
eration. We always have to check that taking different representatives does not change
the class.

BFor example, if we work on Z{3Z, one cannot define rasrbs “ rabs. In fact, r1s “ r4s
and r2sr1s “ r21s “ r2s and r2sr4s “ r16s “ r1s, so r2sr1s ‰ r2sr4s. So, the relation
rasrbs “ rabs is not well defined. In particular, exponentiation of congruence classes is
not well defined.



Chapter 7

Congruence equations

7.1 Congruences and polynomials

Lemma 7.1.1. Let f pxq be a polynomial with integer coefficients, and let n ě 1. If
a ” b mod pnq, then f paq ” f pbq mod pnq.

Proof. White f pxq “ c0 ` c1x ` ... ` ckxk, where each ci P Z. If a ” b mod pnq,
ai ” bi mod pnq for any i ě 0, so ciai ” cibi for all i, and hence f paq ” f pbq mod pnq by
adding congruences. �

Example 7.1.2. Take f pxq “ xpx`1qp2x`1q “ 2x3`3x2`x and n “ 6; we then used
0 ” 6 mod p6q so f p0q ” f p6q ” 0 mod p6q.

Remark 7.1.3. If a polynomial f pxq with integer coefficients has an integer root a (that
is f paq “ 0), then f paq ” 0 mod pnq, for all integers n ě 1. It is sometimes successful
to use the contrapositive to prove that a polynomial has no integer root: that is if there
is an integer n such that the congruence f pxq ” 0 mod pnq has no solutions x, then the
equation f pxq “ 0 has no integer solution. By the previous lemma, it is enough to check
the congruence at a complete set of residue. If n is small, it is fast to check if for any
element x of a complete set of residues if f pxq ” 0 mod pnq or not. BIf for one integer
n, f pxq ” 0 mod pnq this does not mean nothing about the existence or not of a solution.
We will see that there are polynomials such that f pxq ” 0 mod pnq for EVERY integer
n and still there are no integers roots.

Let take a example to illustrate this remark.

Example 7.1.4. Take the polynomial f pxq “ x5 ´ x2 ` x´ 3.
Take n “ 2, a complete set of residue mod p2q is t0, 1u. f p0q “ ´3 ı 0 mod p2q but
f p1q “ ´2 ” 0 mod p2q. So, we CANNOT conclude about the existence or not of
integral roots.
Take n “ 3, a complete set of residue mod p3q is t0, 1, 2u, f p0q “ ´3 ” 0 mod p2q. So,
we CANNOT conclude nothing also with 3.
Take n “ 4, a complete set of residue mod p4q is t0, 1, 2, 3u,

— f p0q “ ´3 ı 0 mod p4q,
— f p1q “ 2 ı 0 mod p4q,

53
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— f p2q “ 45 ´ 4` 2´ 3 ” ´1 ı 0 mod p4q,
— f p3q ” p´1q5 ´ p´1q2 ´ 1´ 3 ” ´2 ı 0 mod p4q.

Then, we know that f pxq has no integer roots.

One question which can come in mind is : Is there polynomials f such that f pxq is
prime for any integer x? The answer is no, apart of course the constant polynomials
f pxq “ p for some prime p.

Theorem 7.1.5. There is no non-constant polynomial f pxq, with integer coefficients,
such that f pxq is prime for all integers x.

Proof. Suppose that f pxq is prime for all integers x, and it is not constant. If we
choose any integer a, then f paq is a prime p. For each b ” a mod ppq, we have f paq ”
f pbq mod ppq, so f pbq ” 0 mod ppq and hence p divides f pbq. By our hypothesis, f pbq is
prime, so f pbq “ p. There are infinitely many integers b ” a mod ppq, so the polynomial
gpxq “ f pxq ´ p has infinitely many roots. However, this is impossible: having degree
d ě 1, gpxq can have at most d roots, so such a polynomial f pxq cannot exist. �

Remark 7.1.6. A polynomial mod some n can be congruent to zero for a number of
elements greater than its degree without being the zero polynomial. Indeed if we take
f pxq “ 2x3 ` 3x2 ` x, we can check that f p0q, f p˘1q, f p˘2q or f p3q are congruent to 0
mod p6q.

7.2 Linear congruences

7.2.1 Simple linear congruences

We have said that we cannot always speak about division since the quotient of two
integers is not necessary an integer. However, for some integers n, a and b fixed, a good
alternative to this problem is to find the solution of the congruence ax ” b mod pnq.
But this problem can be seen as a equivalent form of the linear diophantine equation
studied earlier. Indeed, there is an integer x such that ax ” b mod pnq if and only if
there is an integer x such that ax´ b is a multiple of n if and only if there are integers x
and y such that ax`ny “ b (which is a linear diophantine equation. Into a congruence
language, the theorem about diophantine equations becomes.

Theorem 7.2.1. If d “ gcdpa,nq, then the linear congruence

ax ” b mod pnq

has a solution if and only if d|b. If d does divides b, and if x0 is a particular solution,
then the general solution is given by

x “ x0 `
nt
d

where t P Z; in particular, the solutions form exactly d congruence classes mod pnq,
with representatives

x “ x0, x0 `
n
d
, x0 `

2n
d
, ..., x0 `

pd´ 1qn
d
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Proof. The only part which is not part of the theorem about linear diophantine equa-
tions is the statement about congruence classes. First remark that if x is a solution then
any element of rxs is also a solution since for any integer x1 such that x ” x1 mod pnq,
then ax ” ax1 mod pnq. Now, note that

x0 `
nt
d
” x0 `

nt1

d
mod pnq

if and only if n divides npt´ t1q{d that is if and only if d divides t´ t1, so the congruence
classes of solutions mod pnq are obtained by letting t range over a complete set of
residues mod pdq, such as 0, 1, ..., d´ 1. �

Remark 7.2.2. In order to find the particular solution after checking that such a so-
lution exists, it is fast just trying with a complete set of residue. If n is too big, we can
apply the algorithm of Chapter 1 to find this particular solution.

Corollary 7.2.3. If gcdpa,nq “ 1 then the solution x of the linear congruence ax ”
b mod pnq form a single congruence class mod pnq.

Example 7.2.4. 1. Consider the congruence

10x ” 3 mod p12q

We have that gcdp10, 12q “ 2 does not divide 3, so there are no solutions. (but it
is expectable since 10x` 12y is even and 3 is odd.)

2. Consider the congruence
10x ” 6 mod p12q

Since gcdp10, 12q “ 2 divides 6, there are two classes of solutions. We can take
x0 “ 3 as a particular solution, so the general solution has the form

x “ x0 `
nt
d
“ 3`

12t
2
“ 3` 6t,

where t P Z. These solutions form two congruence classes r3s and r9s mod p12q,
with representatives x0 “ 3 and x0 ` d{n “ 9; (equivalently they form a single
congruence class r3s mod p6q.

3. Consider the congruence
7x ” 3 mod p12q

Since gcdp7, 12q “ 1 there is a single congruence class of solutions; this is the
class rxs “ r9s, since 7ˆ 9 “ 63 ” 3 mod p12q.

Lemma 7.2.5. 1. Let m divide a, b and n, and let a1 “ a{m, b1 “ b{m and n1 “ n{m,
then

ax ” b mod pnq if and only if a1x ” b1 mod pn1q

2. Let a and n be coprime, let m divide a and b, let a1 “ a{m and b1 “ b{m; then

ax ” b mod pnq if and only if a1x ” b1 mod pnq
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Proof. 1. We have ax ” b mod pnq if and only if ax ´ b “ qn for some integer
q; dividing by m, we see that this is equivalent to a1x ´ b1 “ qn1, that is, to
a1x ” b1 mod pn1q.

2. If ax ” b mod pnq, then there is an integer n such that ax ´ b “ qn and hence
a1x´b1 “ qn{m; in particular, m divides qn. Now m divides a, which is coprime to
n, so m is also coprime to n and hence m must divide q. Thus a1x ´ b1 “ pq{mqn
is a multiple of n, so a1x ” b1 mod pnq. For the converse, if a1x ” b1 mod pnq
then a1x ´ b1 “ q1n for some integer q1, so multiplying through by m we have
ax´ b “ mq1n and hence ax ” b mod pnq.

�

Let see throughout example how we can use this lemma.

Example 7.2.6. Consider the congruence

10x ” 6 mod p14q

Since gcdp10, 14q “ 2 divides 6, so solutions do exist. If x0 is a particular solution,
then the general solution is x “ x0 ` p14{2qt “ x0 ` 7t, where t P Z these form
the congruence classes rx0s and rx0 ` 7s in Z{14Z. By the previous lemma 1.,
dividing by gcdp10, 14q which divide 10, 14 and 6 the previous congruence equation
is equivalent to

5x ” 3 mod p7q

Now, noting that 3 ” 10 mod p7q, we get

5x ” 10 mod p7q

Thus x0 “ 2 is a solution, so in the general solution has the form

x “ 2` 7t pt P Zq

1. Consider the congruence

4x ” 13 mod p47q

Since gcdp4, 47q “ 1 divides 13, the congruence has solutions. If x0 is a particular
solution then the general solution is x “ x0 ` 47t where t P Z forming a single
congruence class rx0s in Z{47Z. Noting that 4 ˆ 12 “ 48 ” 1 mod p47q, we
multiply by 12 to give

48x ” 12ˆ 13 mod p47q

That is

x ” 3ˆ 4ˆ 13 ” 3ˆ 52 ” 3ˆ 5 ” 15 mod p47q

Thus, we can take x0 “ 15, so the general solution is x “ 15` 47t.
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7.2.2 Simultaneous linear congruences, chinese remainder theorem

We can be lead to consider simultaneous linear congruence. To answer this problem
we have the Chinese Remainder theorem.

Theorem 7.2.7. Let n1, n2, ..., nk be positive integers, with gcdpni,n jq whenever i ‰ j,
and let a1, ..., ak be any integers. Then the solutions of the simultaneous congruences

x ” a1 mod pn1q, x ” a2 mod pn2q, ..., x ” ak mod pnkq

form a single congruence class rx0s mod pnq, where n “ n1n2...nk (and

x0 “ a1c1d1 ` a2c2d2 ` ...` akckdk

where ci “ n{ni and di is a solution of the congruence cix ” 1 mod pniq. In other words,
the general solution is of the form x “ x0 ` nt where t P Z.

Proof. Let ci “ n{ni “ n1...ni´1ni`1...nk for each i “ 1, ..., k. Since each of its factors n j
p j ‰ iq is coprime to ni, so is ci. Therefore for each i, the congruence cix ” 1 mod pniq

has a single congruence class rdis of the solution mod pniq. We now claim that the
integer

x0 “ a1c1d1 ` a2c2d2 ` ...` akckdk

simultaneously satisfies the given congruences, that is, x0 ” ai mod pniq for each i. To
see this, note that each c j (other than ci) is divisible by ni, so a jc jd j ” 0mod pniq and
hence x0 ” aicidi mod pniq; now cidi ” 1 mod pniq, by choice of di, so x0 ” ai mod pniq

as required. Thus x0 is a solution of the simultaneous congruences, and it immediately
follows that the entire congruence class rx0s of x0 mod pnq consists of solutions.
To see that this class is unique, suppose that x is any solution; then x ” ai ” x0 mod pniq

for any ni divides x ´ x0. Since n1, ...,nk are mutually coprime, then their product n
also divides x´ x0, so x ” x0 mod pnq. �

As a consequence, we obtain easily the interesting following corollary:

Corollary 7.2.8. Let n have prime-power factorization

n “ pe1
1 ...p

ek
k

where p1, ..., pk are distinct primes. Then for any integers a and b we have a ” b mod pnq
if and only if a ” b mod ppei

i q for each i “ 1, ..., k.

Remark 7.2.9. 1. This result has applications in many areas, for instance in as-
tronomy. If k events occur regularly with periods n1, ..., nk and with the i-th event
happening at times x “ ai, ai ` ni, ai ` 2ni, ... then the k events occur simul-
taneously at time x where x ” ai mod pniq for all i; the theorem shows that if
the periods ni are mutually coprime then such a coincidence occurs with period n.
Planetary conjunctions and eclipses are obvious examples of such regular events,
and predicting these may have been the original motivation for the theorem.
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2. Let n1, n2, ..., nk be positive integers, with gcdpni,n jq whenever i ‰ j, and let
a1, ..., ak, b1, ..., bk be any integers such that gcdpai,niq|bi for any i. Then the
solutions of the simultaneous congruences

b1x ” a1 mod pn1q, b2x ” mod pn2q, ..., bkx ” ak mod pnkq

can be find, solving first the congruences b1x ” a1 mod pn1q getting congruence
classes mod ni and then applying the previous theorem.

Example 7.2.10. 1. Solve the following simultaneous congruences:

x ” 2 mod p3q, x ” 3 mod p5q, x ” 2 mod p7q

we have n1 “ 3, n2 “ 5 and n3 “ 7, so n “ 105, c1 “ 35, c2 “ 21 and c3 “ 15. We
first need to find a solution x “ d1 of c1x ” 1 mod pn1q, that is, 35x ” 1 mod p3q;
this is equivalent to ´x ” 1mod p3q, so we can take x “ d1 “ ´1 for example.
Similarly, c2x ” 1 mod pn2q, gives 21x ” 1 mod p5q, that is, x ” 1 mod p5q, so
we can take x “ d2 “ 1, while c3x ” 1 mod pn3q gives 15x ” 1 mod p7q, that is,
x ” 1 mod p7q, so we can also take x “ d3 “ 1. Of course, different choices of di
are possible here, leading to different values of x0, but they will all give the same
congruence class of solutions mod p105q. We now have:

x0 “ a1c1d1 ` a2c2d2 ` a3c3d3 “ 2ˆ 35ˆ p´1q ` 3ˆ 21ˆ 1` 2ˆ 15ˆ 1 “ 23,

so the solutions form the congruence class r23s mod p105q, that is, the general
solution is x “ 23` 105t, (t P Z).
We can also use the Chinese Remainder Theorem as the basis for second method
for solving simultaneous linear congruences, which is less direct but often more
efficient. We start by finding a solution x “ x1 of one of the congruences. It
is usually best to start with the congruence involving the largest modulus. So,
we could start with x ” 2 mod p7q, which has x1 “ 2 as an obvious solution.
The remaining solutions of this congruence are found by adding or subtracting
multiples of 7, and among these we can find an integer x2 “ x1 ` 7t which also
satisfies the second congruence x ” 3 mod p5q: trying x1, x1 ˘ 7, x1 ˘ 14,...
in turn, we soon find x2 “ 2 ´ 14 “ ´12. This satisfies x ” 2 modp7q and
x ” 3 mod p5q, and by Chinese Remainder Theorem the general solution of this
pair of congruences has the form x2`35t “ ´12`35t pt P Zq. Trying x2, x2˘35,
x2 ˘ 70, ... in turn, we soon find a solution x3 “ ´12 ` 35t which also satisfies
all three congruence x ” 2 mod p3q, namely x3 “ ´12 ` 35 “ 23. This satisfies
all three congruences so by Chinese Remainder Theorem their general solution
consists of the congruence class r23s mod p105q.

2. Consider the simultaneous congruences

7x ” 3 mod p12q, 10x ” 6 mod p14q

We have solved these two linear congruences previously and they have respectively
as general solution x “ 9 ` 7t and x “ 2 ` 7t. It follows that we can replace the
original pair of congruences with the pair

x ” 9 mod p12q, x ” 2 mod p7q
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Clearly, x0 “ 9 is a particular solution; since the moduli 12 and 7 are coprime,
with product 84, the Chinese Remainder Theorem implies that the general solution
has the form 9` 84t.

3. Consider the linear congruence

13x ” 71 mod p380q

Instead of using the algorithm described earlier for solving a single linear congru-
ence, we can use the factorization 380 “ 22 ˆ 5 ˆ 19, together with the corollary
of Chinese Remainder Theorem, we can replace this congruence with the three
simultaneous congruences

13x ” 71 mod p4q, 13x ” 71 mod p5q, 13x ” 71 mod p19q.

These immediately reduce to

x ” 3 mod p4q, 3x ” 1 mod p5q, 13x ” 14 mod p19q

Now these have mutually coprime moduli, so the Chinese Remainder Theorem
applies, and we can use either of our two methods to find the general solution.
Using the second method, we start with a solution x1 “ 4 of the third congruence;
adding and subtracting multiples of 19, we find that x2 “ 42 also satisfies the
second congruence and then adding and subtracting multiples of 19 ˆ 5 “ 95 we
find that 327 (or equivalently ´53) also satisfies the first congruence. Thus the
general solution has the form x “ 327` 380t pt P Zq.

More generally, we can see the Chinese Remainder theorem as a particular case of
the following theorem:

Theorem 7.2.11. Let n1, ..., nk be positive integers and let a1, ..., ak be any integers.
Then the simultaneous congruences

x ” a1 mod pn1q, ..., x ” ak mod pnkq

have a solution x if and only if gcdpni,n jq divides ai ´ a j whenever i ‰ j. When this
condition is satisfied, the general solution forms a single congruence class mod pnq,
where n is the least common multiple of n1, ..., nk.

The reader can refer to the proof of the book of Jones (Theorem 3.12).

Remark 7.2.12. If the moduli ni are mutually coprime then gcdpni,n jq “ 1 for all
i ‰ j, so the condition gcdpni,n jq|pai ´ a jq is always satisfied; moreover, the least com-
mon multiple n of n1,..., nk is then their product n1, ..., nk, so we obtain the Chinese
Remainder theorem.

Example 7.2.13. Consider the congruences

x ” 11 mod p36q, x ” 7 mod p40q, x ” 32 mod p75q

Here, n1 “ 36, n2 “ 40 and n3 “ 75, so we have

n12 “ gcdp36, 40q “ 4,n13 “ gcdp36, 75q “ 3 and n23 “ gcdp40, 75q “ 5
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Since

a1 ´ a2 “ 11´ 7 “ 4, a1 ´ a3 “ 11´ 32 “ ´21 and a2 ´ a3 “ 7´ 32 “ ´25

the conditions ni j|pai ´ a jq are all satisfied, so there are solutions forming a single con-
gruence class mod pnq where n “ lcmp36, 40, 75q “ 1800. To find the general solution,
the idea is to factorize each ni, and replace the first congruence with

x ” 11 mod p22
q and x ” 11 mod p32

q

the second with
x ” 7 mod p23

q and x ” 7 mod p5q

and the third with
x ” 32 mod p3q and x ” 32 mod p52

q

This gives us a set of six congruences, in which the moduli are powers of the primes
p “ 2, 3 and 5. From these, we select one congruence involving the highest power of
each prime: for p “ 2 we must choose x ” 7 mod p23q (which implies x ” 11mod p22q),
for p “ 3, we must choose x ” 11 mod p32q (which implies x ” 32 mod p3qq, and for
p “ 5 we must choose x ” 32 mod p52q (which implies x ” 7 mod p5qq. These three
congruences, which can be simplified to

x ” 7 mod p8q, x ” 2 mod p9q, x ” 7 mod p25q,

have mutually comprise moduli, then we find using a method as before sugared by the
proof of the Chinese Remainder Theorem, that the general solution is x ” 407 mod p1800q.

It is sometimes possible to solve simultaneous congruences by the Chinese Remainder
Theorem, even when the congruences are not all linear.

Example 7.2.14. Consider the simultaneous congruences

x2
” 1 mod p3q and x ” 2 mod p4q

Noticing that x2 ” 1 mod p3q is equivalent to x ” 1 mod p3q or x ” 2 mod p3q, so the
pair of congruences are equivalent to

x ” 1 mod p3q and x ” 2 mod p4q

or
x ” 2 mod p3q and x ” 2 mod p4q

Then we solve both cases thanks to Chinese Remainder Theorem. We find that the first
case has general solution x ” ´2 mod p12q while the second pair has general solution
x ” 2 mod p12q, so the general solution for the initial simultaneous congruence is
x ” ˘2 mod p12q.

Theorem 7.2.15. Let n “ n1...nk where the integers ni are mutually coprime, and let
f pxq be a polynomial with integer coefficients. Suppose that for each i “ 1, ..., k there
are Ni congruence classes x P Z{niZ such that f pxq “ 0 mod pniq. Then there are
N “ N1...Nk classes x P Z{nZ such that f pxq ” 0 mod pnq.
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Proof. Since the moduli ni are mutually coprime, we have f pxq ” 0 mod pnq if and only
if f pxq ” 0 mod pniq for all i. Thus each class of solution x P Z{nZ of f pxq ” 0 mod pnq
determines a class of solutions x “ xi P Z{niZ of f pxiq ” 0 mod pniq for each i.
Conversely, if for each i we have a class of solutions xi P Z{niZ of f pxiq ” 0 mod pniq,
then by the Chinese Remainder Theorem there is a unique class x P Z{nZ satisfying
x “ xi mod pniq for all i, and this class satisfies f pxq ” 0 mod pnq. Thus there is a
one-to-one correspondence between classes x P Z{nZ satisfying f pxq ” 0 mod pnq, and
k-tuples of classes xi P Z{niZ satisfying f pxiq ” 0 mod pniq for all i. For each i there
are Ni choices for the class xi P Z{niZ so there are N1, ..., Nk such k-tuples and hence
this is the number of classes a P Z{nZ satisfying f pxq ” 0 mod pnq. �

7.2.3 Congruences with prime modulus

If we observe a linear equation of the form ax ” b mod p with p a prime integer.
We know that it has a unique solution if and only if gcdpa, pq which is equal either to
1 or p divides b. We can see this in term of polynomial and we have just seen that
if a ı 0 mod p, the polynomial ax ´ b in Z{pZ has at least a root in Z{pZ. More,
generally, we have the following result.

Theorem 7.2.16. Let p be prime, and let f pxq “ adxd`...`a1x`a0 be a polynomial with
integer coefficients, where ai ı 0 mod p for some i. Then, the congruence f pxq ” 0 mod p
is satisfied by at most d congruence classes rxs P Z{pZ.

Proof. We use induction on d then if f pxq “ a0 with p not dividing a0, so there are no
solutions of f pxq ” 0 mod p, as required. for the inductive step, we now assume that
d ě 1, and that all polynomials gpxq “ bd´1xd´1 ` ...` b0 with some bi ı 0 mod p have
at most d´ 1 roots rxs P Z{pZ.
Let f pxq “ adxd` ...` a0 be a polynomial of degree d. If the congruence f pxq ” 0 mod p
has no solutions, there is nothing left to prove, so suppose that ras is a solution; thus
f paq ” 0 mod p, so p divides f paq. Now

f pxq ´ f paq “
d
ÿ

i“0

aixi
´

d
ÿ

i“0

aiai
“

d
ÿ

i“0

aipxi
´ ai

q “

d
ÿ

i“1

aipxi
´ ai

q

For each i “ 1, ..., d, we can put:

xi
´ ai

“ px´ aqpxi´1
` axi´2

` ...` ai´2x` ai´1
q,

so, that by taking out the common factor px´ aq we have

f pxq ´ f paq “ px´ aqgpxq

for some polynomial gpxq with integer coefficients, of degree at most d´1. Now p cannot
divide all the coefficient of gpxq: if it did then since it also divides f paq it would have
to divide all the coefficients of gpxq: if it did, then since it also divides f paq, it would
have to divide all the coefficients of f pxq “ f paq ` px´ aqgpxq, against our assumption.
We may therefore apply the induction hypothesis to gpxq, so that at most d´ 1 classes
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rxs satisfy gpxq ” 0 mod p. We now count classes rxs satisfying f pxq ” 0 mod p; if any
class rxs “ rbs satisfies f pbq ” 0 mod p, then p divides both f paq and f pbq, so it divides
f pbq´ f paq “ pb´ aqgpbq; since p divides both f paq and f pbq, so it divides b´ a to gpbq,
so either rbs “ ras or gpbq ” 0 mod p. There are at most d ´ 1 classes rbs satisfying
gpbq ” 0 mod p, and hence at most 1 ` pd ´ 1q “ d satisfying f pbq ” 0 mod p, as
required. �

Remark 7.2.17. 1. If ad ” 0 mod p in the previous theorem, f pxq has strictly
fewer that d classes rxs satisfying f pxq ” 0 mod p. Even if ad ı 0 mod p, we can
have fewer that d class. For instance f pxq “ x2 ` 1 has only one root in Z{2Z,
which is the class r1s and it has no roots in Z{3Z.

2. The condition ai ı 0 mod p for some i ensures that f pxq yields a non-trivial
polynomial when we reduce it mod p. If ai ” 0 mod p for any i, then all p classes
rxs P Z{pZ satisfy f pxq ” 0 mod p, so the result will fail if d ă p

3. It is essential to suppose that the moduli is prime: for example, the polynomial
f pxq “ x2 ´ 1, of degree 2, has four roots in Z{8Z, namely r1s, r3s, r5s and r7s.

A useful equivalent vernon of the previous Lagrange’s theorem is the contrapositive:

Corollary 7.2.18. Let f pxq “ adxd ` ...` a1x` a0 be a polynomial with integer coeffi-
cients, and let p be prime. If f pxq has more than d roots in Z{pZ, then p divides each
of its coefficients ai

The following result useful in studying polynomials of high degree, is known as
Fermat’s Little Theorem:

Theorem 7.2.19. If p is prime and a ı 0 mod p, then ap´1 ” 1mod p.

Proof. The integers 1, .., p ´ 1 form a complete set of non-zero residues mod p. If
a ı 0 mod p, then xa ” xb mod p implies x ” y mod p, so that the integers a, 2a, ....,
pp´1qa lie in distinct classes mod p. None of these integers is divisible by p, so they also
form a complete set of non-zero residues. It follows the a, 2a, ..., pp´ 1qa are congruent
to 1, 2, ..., p ´ 1 in some order. Thus, the products of these two sets of integers must
therefore lie in the same class, that is,

1ˆ 2ˆ ....ˆ pp´ 1q ” aˆ 2aˆ ....ˆ pp´ 1qa mod p,

or equivalently
pp´ 1q! ” pp´ 1q!ap´1 mod p

Since pp ´ 1q! is coprime to p, we can divide through by pp ´ 1q! and deduce that
ap´1 ” 1 mod p. �

Remark 7.2.20. Another interpretation of the previous result is that all the classes in
Z{pZ except r0s are roots of the polynomial xp´1 ´ 1. For a polynomial satisfied by all
the classed in Z{pZ, we simply multiply by x, to get xp ´ x.

Example 7.2.21. Fermat’s little theorem fails if p is not prime, if n “ 4 and a “ 3,
an´1 “ 27 ı 1 mod 4, for instance.
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Corollary 7.2.22. If p is prime then ap ” a mod ppq for every integer a.

Example 7.2.23. 1. Find 268 mod 19. 19 is prime we can apply the previous theo-
rem, we have

268
” 218ˆ3`14

” p218
q

3214
” 214

” p24
q

3
ˆ22

” p´3q3ˆ4 ” ´8ˆ4 ” ´32 ” 6 mod 19

2. Prove that a25 ´ a is divisible by 30 for every integer a. Since 30 “ 2 ˆ 3 ˆ 5, it
is enough to prove that a25 ´ a is divisible by 2, 3 and 5. But,

a25
“ pa5

q
5
” a5

” a mod 5

a25
“ pa3

q
8a ” a9

” pa3
q

3
” a3

” a mod 3

and
a25
“ pa2

q
12a ” pa2

q
6a ” pa2

q
3a ” pa2

q
2
” a2

” a mod 2

Remark 7.2.24. The corollary of Fermat theorem proves that if f pxq is any polynomial
of degree d ě p, then we can find a polynomial gpxq of degree less than p with the property
that f pxq ” gpxq mod p for all integers x. In other words, when considering polynomials
mod p, it is sufficient to restrict attention to those of degree d ă p. Similarly, the
coefficients can also be simplified by reducing them mod p.

Example 7.2.25. Find all the roots of the congruence

x17
` 6x14

` 2x5
` 1 ” 0 smod 5

x17
`6x14

`2x5
`1 ” px5

q
3x2
`px5

q
2
`2x`1 ” x5

`x2
`2x`1 ” x2

`3x`1 ” x2
´2x`1 ” px´1q2 mod 5

So it is equivalent to solve
px´ 1q2 ” 0 mod 5

and we find an unique solution which is rxs “ r1s, so this class is the only solution of
the first congruence equation.

One famous corollary of Fermat’s little theorem, is the Wilson’s theorem:

Corollary 7.2.26. An integer n is prime if and only if pn´ 1q! ” ´1 mod n.

Proof. Suppose that n is a prime p. If p “ 2 then pp´ 1q! “ 1 ” ´1 mod p, as required,
so we may assume that p is odd. Define

f pxq “ p1´ xqp2´ xq...pp´ 1´ xq ` 1´ xp´1,

a polynomial with integer coefficients. This has degree d ă p ´ 1, since when the
product is expanded, the two terms in f pxq involving xp´1 cancel. If a “ 1, 2, ..., p ´ 1,
then f paq ” 0 mod p: the product p1 ´ aqp2 ´ aq...pp ´ 1 ´ aq vanishes since it has a
factor equal to 0, and 1 ´ ap´1 ” 0 mod p by Ferma’s little theorem. Thus, f pxq has
more that d roots mod p, then its coefficients are all divisible by p. In particular, p
divide the constant term pp´ 1q!` 1, so pp´ 1q! ” ´1 mod p.
For the converse, suppose that pn´1q! ” ´1 mod n. We then have pn´1q! ” ´1 mod n.
We then have pn´ 1q! ” ´1 mod m, for any factor m of n. If m ă n then m appears as
a factor of pn´ 1q!, so pn´ 1q! ” 0 mod m and hence ´1 ” 0 mod m. This implies that
m “ 1, so we conclude that n has no proper factors and is therefore prime. �
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Theorem 7.2.27. Let p be an odd prime. Then the quadratic congruence x2 ` 1 ”
0 mod p has a solution if and only if p ” 1 mod 4.

Proof. Suppose that p is an odd prime, and let k “ pp´ 1q{2. In the product

pp´ 1q! “ 1ˆ 2ˆ ...ˆ kˆ pk` 1q ˆ ...ˆ pp´ 2q ˆ pp´ 1q,

we have p ´ 1 ” ´1 mod p, p ´ 2 ” ´2 mod p, ... , k ` 1 “ p ´ k ” ´k mod p, so by
replacing each of the k factors p´ i with ´i for i “ 1, ..., k, we see that

pp´ 1q! ” p´1qk.pk!q2 mod p

Now Wilson’s theorem gives pp´ 1q! ” ´1 mod p, so p´1qkpk!q2 ” ´1 mod p and hence
pk!q2 ” p´1qk`1 mod p. If p ” 1 mod 4 then k is even, so pk!q2 ” ´1 mod p and hence
x “ k! is a solution of x2 ` 1 ” 0 mod p.
On the other hand, suppose that p ” 3 mod 4, so that k “ pp´ 1q{2 is odd. If x is any
solution of x2 ` 1 ” 0 mod p, then x is coprime to p, so Fermat’s Little theorem gives
xp´1 ” 1 mod p. Thus 1 ” px2qk ” p´1qk ” ´1 mod p, which impossible since p is odd,
so there can be no solution. �

Remark 7.2.28. The previous theorem implies that if p is any prime then there are at
most two classes rxs P Z{pZ of solutions of x2 ` 1 ” 0 mod p. When p ” 1 mod 4,
there are two classes ˘rk!s, when p ” 3 mod 4, there are no solutions, and when p “ 2
there is a unique class r1s solutions.

Example 7.2.29. Let p “ 13, so p ” 1 mod 4. Then k “ 6, and 6! “ 720 ” 5 mod 13,
so x “ 5 is a solution of x2 ` 1 ” 0 mod 13, as is easily verified. The other solution is
then ´5 ” 8 mod 13.

7.2.4 Congruences with prime power modulus

We consider the following situation. Let f pxq “
ř

j a jx j be a polynomial with integer

coefficients, and let the congruence f pxq ” 0 mod pi have a solution x ” xi mod pi. If
xi`1 “ xi ` piki, then the Binomial theorem gives

f pxi`1q “
ř

j a jpxi ` pikiq
j

“
ř

j a jx
j
i `

ř

j ja jx
j´1
i piki

“ f pxiq ` f0pxiqpiki mod pi`1

Where we ignore multiples of pi`1. Putting f pxiq “ piqi and dividing through by pi, we
see that f pxi`1q ” 0 mod pi`1 if and only if

qi ` f 1pxiqki ” 0 mod p p˝q

There are now three possibilities:

1. if f 1pxiq ı 0 mod p then p˝q has a unique solution ki mod p, so xi gives rise to a
unique solution xi`1 P Z{pi`1Z of f pxq ” 0 mod pi`1;
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2. if f 1pxiq ” 0 ı qi mod p, then p˝q has no solution ki, and xi gives no solution
xi`1 P Z{pi`1Z;

3. if f 1pxiq ” 0 ” qi mod p then every ki P Z{pZ satisfies p˝q, so xi gives rise to p
solutions xi`1 P Z{pi`1Z.

This principle is part of a much more general result known as Hensel’s Lemma.

Remark 7.2.30. There is a close analogy with Newton’s method where a solution x P R
of an equation f pxq “ 0 is found as the limit of a convergent sequence of approximations
xi given by the recurrence relation

xi`1 “ xi ´
f pxiq

f 1pxiq

In our case, we have xi`1 “ xi ` piki, where qi ` f 1pxiqki ” 0 mod p and f pxiq “ piqi,
so writing ki “ ´qi{ f 1pxiq and substituting for ki we get the same recurrence relation
(though the arithmetic used is modular, rather than real). In Newton’s method, conver-
gence means that terms xi and x j become close together, in the sense that |xi ´ x j| Ñ 0
as i, j Ñ 8, in our case, however we regard xi and x j as close (in modular arithmetic)
if xi ” x j mod pe when e is large. Just as real numbers can be constructed as the limits
of convergent sequences of rational numbers, this new concept of convergence gives rise
to a new number system, namely the field Qp of p-adic numbers (one field for each
prime p). The importance of this number system is that it allows algebraic, analytic
and topological methods to be applied to the study of congruences mod pe.

Let’s us study some examples:

Example 7.2.31. 1. To solve the congruence

2x ” 3 mod 5e

we take p “ 5 and f pxq “ 2x´3. By inspection, the only solution of 2x ” 3 mod 5
is x ” 4 mod 5. Any solution of 2x ” 3 mod 52 must satisfy 2x ” 3 mod 5; and
must therefore have the form x ” 4 ` 5k1 mod 52 for some integer k1. Then
3 ” 2x ” 8 ` 10k1 mod 52, so 10k1 ” ´5 mod 52 and hence 2k1 ” ´1 mod 5.
This has solution k1 ” 2 mod 5, so we obtain x “ 4 ` 5k1 ” 14 mod 52 as
the general solution of 2x ” 3 mod 52. We can now repeat this process to solve
2x ” 3 mod 53. Putting x ” 14 ` 52k2 mod 53 we see that 28 ` 50k2 ” 3 mod 53.
So 50k2 ” ´25 mod 53 and hence 2k2 ” ´1 mod 5, with solution k2 ” 2 mod 5;
thus x ” 14` 52k2 ” 64 mod 53 is the general solution of 2x ” 3 mod 53.
We can iterate this as often as we like, a typical step being as follows. Suppose
that, for some i, the general solution of 2x ” 3 mod 5i is x ” xi mod 5i for some
xi, so 2xi ´ 3 “ 5iqi for some integer qi. (We took x1 “ 4 and q1 “ 1 in the
above calculation, for instance.) We put x ” xi`5iki mod 5i`1, for some unknown
integer ki, so 3 ” 2x ” 2xi ` 2 ˆ 5iki mod 5i`1, or equivalently 2ki ” ´qi mod 5,
with solution ki ” 2qi mod 5. Thus x ” xi`1 ” xi` 2ˆ 5iqi mod 5i`1 is the general
solution of 2x ” 3 mod 5i`1.
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2. Let us solve
f pxq “ x3

´ x2
` 4x` 1 ” 0 mod 5e

for e “ 1, 2 and 3. By inspection, for e “ 1, the only solutions of x ” ˘1 mod 5.
Let us take x1 “ ´1 as our starting point, so f px1q “ 5q1 with q1 “ ´1. To find a
corresponding solution of f pxq ” 0 mod 52, we put x2 ” x1`5k1 ” ´1`5k1 mod 52.
Then

f px2q ” px1 ` 5k1q
3 ´ px1 ` 5k1q

2 ` 4px1 ` 5k1q ` 1
” px3

1 ´ x2
1 ` 4x1 ` 1q ` p3x2

1 ´ 2x1 ` 4q5k1

” 5q1 ` 9ˆ 5k1 mod 52

where we have used the Binomial theorem to expand each power of x1`5k1; we have
included only the first two terms in each binomial expansion, since any subsequent
terms are multiples of 52 and hence congruent to 0. Thus f px2q ” 0 mod 52 if and
only if q1 ` 9k1 ” 0 mod 5; since q1 “ ´1, this is equivalent to k1 ” ´1 mod 5,
so x ” x2 ” x1 ` 5k1 ” ´6 mod 52 is the unique solution of f pxq ” 0 mod 52

satisfying x ” ´1 mod 5.
Repeating this process, we have f px2q “ ´275 “ 52q2 where q2 “ ´11. If we put
x3 ” x2 ` 52k2 ” ´6` 52k2 mod 53 then

f px3q ” px2 ` 52k2q
3 ´ px2 ` 52k2q

2 ` 4px2 ` 52k2q ` 1
” px3

2 ´ x2
2 ` 4x2 ` 1q ` p3x2

2 ´ 2x2 ` 4q52k2
” 52q2 ` 124ˆ 52k2 mod 53

so we require q2 ` 124k2 ” 0 mod 5, that is, k2 ” ´1 mod 5. This gives x ”
x3 ” x2` 52k2 ” ´31 mod 53 as the unique solution of f pxq ” 0 mod 53 satisfying
x ” ´1 mod 5.



Chapter 8

The ring pZ{nZ,`, ¨q, its group of
unit Un, applications

8.1 Algebraic interlude

A little of group theory

We will define briefly here what is a group and what is a ring.

Definition 8.1.1. We say that G is a group if it is a set G with a binary operation ‹
satisfying the following axioms:

1. if g, h P G then g ‹ h P G (stable under the multiplication).

2. if f , g, h P G then f ‹ pg ‹ hq “ p f ‹ gq ‹ h (associativity)

3. there is an element e P G such that g ‹ e “ e ‹ g for any g P G. (Identity).

4. for each g P G there is an element h P G such that g ‹ h “ e “ h ‹ g. (inverse)

We often omit the symbol ‹, and write f g instead of f ‹ g. A product g ‹ .... ‹ g with i
factor will be written gi.

— e is called the identity element.
— The element h of the last axiom is called the inverse of g often written as g´1.
— We call the order of G denoted by |G| the number of elements of the set G; if

this is finite, we say that G is a finite group.
— A group is said to be abelian or commutative, if moreover gh “ hg for any

g, h P G (commutativity). For an abelian group ‹ is often denoted by `, the
identity by 0 (usually called the zero element) and the inverse of g by ´g, so
for instance, 3. becomes g` 0 “ g “ 0` g.

Example 8.1.2. pR,`q, pC,`q, pMn,mpRq,`q are abelian groups. pRz ´ t0u, .q, pCz ´
t0u, .q are also abelian group.

Definition 8.1.3. A subgroup of a group G is a subset H of G which is also a group
with respect to the same binary operation as G; this is equivalent to the conditions:

1. the identity element e belongs to H,

2. gh P H, for any g, h P H,

67
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3. if h P H then h´1 P H.

this is also equivalent to the conditions:

1. the identity element e belongs to H,

2. gh´1 P H, for any g, h P H,

We write H ď G to denote that H is a subgroup of G.

Example 8.1.4. pZ,`q is a subgroup of pR,`q which is a subgroup of pC,`q.

Definition 8.1.5. A homomorphism between groups G and G1 is a function
θ : G Ñ G1 such that θpghq “ θpgqθphq for any g, h P G; if θ is a bijection, it is called
isomorphism. If such an isomorphism exists, we say that G and G1 are isomorphic,
written G » G1. This means that G and G1 have the same algebraic structure, and differ
only in the notation for their elements.

Definition 8.1.6. If H ď G and g P G the right (resp. left) coset of H containing
g is the subset Hg “ thg|h P Hu (resp. gH “ tgh|h P Hu) of G. Each right coset of
H contains |H| elements. Right cosets Hg1 and Hg2 are either equal or disjoints, they
partition G into disjoint subsets. The number of distinct right cosets of H in G is called
the index of H in G denoted by rG : Hs.

Theorem 8.1.7. If G is finite, then |G| “ rG : Hs ˆ |H|. In particular, we have
Lagrange’s theorem, that is |H| divides |G|.

Definition 8.1.8. The order of an element g P G is the least integer n ą 0 such
that gn “ 1, provided such an integer exists; if it does not, g has infinite order.

Remark 8.1.9. If G is finite, then every element g has finite order n for some n; we
group generated by g that is the set of the power of g is then ă g ą“ te, g, g2, ...., gn´1u,
it forms a subgroup of G, then by Lagrange theorem we have that n||G|. Moreover, for
any g P G, g|G| “ e.

Definition 8.1.10. A group G is cyclic if there exists an element c P G, called gen-
erator for G, such that every g P G has the form g “ ci for some integer i, that is G
is equal to the set generated by c G “ă c ą“ tck|k P Zu. If c has finite order n, then
|G| “ n, and G is isomorphic to Z{nZ.

Remark 8.1.11. This group G has one subgroup H of order m, for each m dividing n,
and no other subgroups; H is cyclic group of order m, with generator rn{ms.

Definition 8.1.12. The direct product G1 ˆ G2 of groups G1 and G2 consists of all
ordered pairs pg1, g2q with gi P Gi for i “ 1, 2. This is a group, with binary operation
pg1, g2qph1, h2q “ pg1h1, g2h2q; indeed, the identity element is pe1, e2q where ei is the
identity element in Gi for i “ 1, 2 and the inverse of some pg1, g2q is pg´1

1 , g´1
2 q. There

are subgroups G11 “ tpg1, e2q|g1 P G1u » G1 and G12 “ tpe1, g2q|g2 P G2u » G2. Direct
products G1 ˆ ...ˆ Gk are defined similarly for k ą 2.
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A little of ring theory

Definition 8.1.13. We say that a set R is a unitary commutative ring if it is
provided with two binary operations (addition r`s and multiplication r.s, usually written
rs), and with distinct elements 0 and 1 (unit element) such that

1. Additive structure pR,`q is an abelian group, with zero element 0;

2. rs “ sr for any r, s P R (commutativity);

3. rpstq “ prsqt for any r, s, t P R (associativity);

4. rps` tq “ rs` rt, for any r, s, t P R (distributivity);

5. r1 “ r, for any r P R.

Example 8.1.14. 1. Z, Q, R, C are all examples of rings.

2. The direct product R1 ˆ .... ˆ Rk of rings R1, ..., Rk is defined in much the same
way as the direct product of groups: its elements are the k-tuples pr1, ..., rkq such
that ri P Ri for any i, with component wise operations.

Definition 8.1.15. A homomorphism between rings R and R1 is a function θ :
R Ñ R1 such that θpr ` sq “ θprq ` θpsq and θprsq “ θprqθpsq for any r, s P R, and
θp1q “ 1; if θ is a bijection, it is called an isomorphism. If such an isomorphism
exists, we say that R and R1 are isomorphic, written R » R1.
Definition 8.1.16. An element r P R is a unit if rs “ 1 for some s P R; the units form
a group under the multiplication, with 1 as the identity element. A field is a ring R in
which every element r ‰ 0 is a unit.

Example 8.1.17. Q, R and C are fields.

8.2 The ring pZ{nZ,`, .q and its group of Units

Lemma 8.2.1. The set of the congruence classes mod n Z{nZ is a ring where the

1. addition operation is

ras ` rbs “ pnZ` aq ` pnZ` bq “ nZ` pa` bq “ ra` bs

2. multiplication operation is

ras.rbs “ pnZ` aqpnZ` bq “ nZ` pabq “ ras.rbs

For n small we can write a addition and multiplication table on Z{nZ, Let observe few
examples:

Example 8.2.2. 1. For n “ 5, we get this table in Z{nZ

ADDITION MULTIPLICATION
` 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

` 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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So Z{5Z is a field since every non-zero element has an inverse.

2. For n “ 6, we get this table in Z{nZ

ADDITION MULTIPLICATION
` 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

` 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Z{6Z is not a field since 2 has no inverse.
If we observe with attention these two multiplicative table. In the first one every line

as a 1 except the one of 0 for n=5 which is not true for n=6, we get product of two non
zeros elements giving zero.

We are looking for extending the arithmetic of Z to Z{nZ. But for instance in Z
the product of two non zero element is non zero which is not always the case as we
have seen by the previous examples; We will see what we can say and generalize or not.
Let’s recall once again the definition of an inverse:

Definition 8.2.3. A multiplicative inverse for a class ras P Z{nZ is a class
rbs P Z{nZ such that rasrbs “ 1. A class ras P Z{nZ is a unit if it has a multiplicative
inverse in Z{nZ. (In this case, we sometimes say that the integer a is a unit mod pnq,
meaning that ab ” 1 mod pnq, for some integer b.) We denote Un the set of all the
units mod pnq.

There is a way very explicit to describe the unit:

Lemma 8.2.4. ras is a unit in Z{nZ if and only if gcdpa,nq “ 1.

Proof. If ras is a unit then ab “ 1 ` qn for some integer b and q; any common factor
of a and n would therefore divide 1, so gcdpa,nq “ 1. Conversely, if gcdpa,nq “ 1 then
1 “ au` nv for some u and v; so rus is a multiplicative inverse of ras �

Corollary 8.2.5. For p prime, Up “ pZ{pZqˆ.

Corollary 8.2.6. Z{nZ is a field if and only if n is prime.

Proof. Indeed, for any a “ 1, 2, 3, ..., p´1, gcdpa, pq “ 1. Thus any non zero element has
an inverse. If n is not prime, then there is a prime p which divides n and gcdpp,nq “
p ‰ 1 and p is a non zero element of Z{nZ, then p is not invertible. �

Remark 8.2.7. Moreover, if n is not prime we have what we call zero divisors,
non-zero elements whose product is 0.

Example 8.2.8. 1. Z{5Z is a field but not Z{6Z as we have observed before.

2. U8 “ tr1s, r3s, r5s, r7su and U9 “ tr1s, r2s, r4s, r5s, r7s, r8su.
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The next result allows us to study units algebraically.

Theorem 8.2.9. For each integer n ě 1, the set Un forms an abelian group under
multiplication mod n, with identity element r1s.

Proof. We have to show that Un that:

1. The product of two units is also a unit.

2. We have the associativity property.

3. The is a neutral element on Un.

4. There is an inverse element for any unit.

The associativity on Un is a direct consequence of the associativity on Z.
Let ras and rbs be two units denote by rus and rvs respectively the two inverses so that
ras.rus “ raus “ r1s and rbs.rvs “ rbvs “ r1s. We have by definition that ras.rbs “ rabs
then rabs.ruvs “ rabuvs “ raus.rbvs “ r1s2 “ r1s. So, rabs has ruvs as inverse and it is
therefore a unit. This prove 1.
The identity element is clearly r1s, indeed for any unit ras P Un, ras.r1s “ ras and each
element has an inverse by definition. The commutativity is a direct consequence of the
commutativity on Z. �

We can then speak about the order of an element.

Example 8.2.10. 1. In U5 the element 2 has order 4; its powers are 21 ” 2 mod 5,
22 ” 4 mod 5, 23 ” 3 mod 5 and 24 ” 1 mod 5, so k “ 4 is the least positive
exponent such that 2k ” 1 mod 5. Similarly, the element 1 has order 1, while the
elements 3 and 4 have orders 4 and 2 respectively.

2. In U8, the elements 1, 3, 5, 7 have order 1, 2, 2, 2 respectively.

New proof of Little Fermat theorem Theorem.

Theorem 8.2.11. If p is prime and a ı 0 mod p, then ap´1 ” 1mod p.

Proof. Up is a group of order p´ 1. Now, Lagrange theorem implies that for any class
ras P Up, rasp´1 “ r1s, so that any a such that ras ‰ r0s, is such that ap´1 ” 1 mod p. �

We have seen earlier that Mersenne numbers are coprime. We see now a justification
of this result:

Lemma 8.2.12. If l and m are coprime positive integers, then 2l ´ 1 and 2m ´ 1 are
corprime. In particular, distinct Mersenne number are coprime.

Proof. Let n be the highest common factor of 2l ´ 1 and 2m ´ 1. Clearly, n is odd,
so 2 is a unit mod pnq. Let k be the order of the element 2 in the group Un. Since
n divides 2l ´ 1, we have r2ls “ r1s in Un, so k divides l. Similarly k divides m. So k
divides gcdpl,mq “ 1.Thus k “ 1, so the element 2 has order 1 in Un. This means that
2l ” 1 mod n, so n “ 1, as required. �
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We recall that the Euler’s function is defined to be φpnq “ |Un|, the number of units
in Z{nZ. We have seen that we have also φpnq “ ta P t1, ....,nu|gcdpa,nq “ 1u.
We have then some generalization of Fermat’s little theorem, often called Euler’s theo-
rem.

Theorem 8.2.13. If gcdpa,nq “ 1 then aφpnq ” 1 mod n.

Proof. Since Un is a group under the multiplication of order φpnq, Lagrange’s theorem
implies that rasφpnq “ r1s for all ras P Un. �

Example 8.2.14. If we take n “ 12 then U12 “ t˘r1s,˘r5su and φp12q “ 4; we have
p˘1q4 “ 1 and p˘5q4 “ 625 ” 1 mod 12, so a4 ” 1 mod 12 for each a coprime to 12.

8.3 Another proof of the multiplicativity of the Euler function

Lemma 8.3.1. If n “ pe where p is prime then

φpnq “ pe
´ pe´1

“ pe´1
pp´ 1q “ np1´ 1{pq

Proof. φppeq is the number of integers in t1, ..., peu which are coprime to pe, that is,
not divisible by p; this set has pe members, of which pe{p “ pe´1 are multiple of p, so
φppeq “ pe ´ pe´1 “ pe´1pp´ 1q. �

In order to get a formula for φ evaluated at some arbitrary n we will need the
following lemma about complete set of residues mod n.

Lemma 8.3.2. If A is a complete set of residues mod n, and if m and c are integers
with m coprime to n, then the set Am ` c “ tam ` c|a P Au is also a complete set of
residues mod n.

Proof. If am ` c ” a1m ` c mod n, where a, a1 P A, then by subtracting c and then
canceling the unit m, we see that a ” a1 mod n, and hence a ” a1 mod n. Thus the n
elements am` c (a P A) all lie in different congruence classes, so they form a complete
set of residues mod n. �

Theorem 8.3.3. If m and n are coprime, then φpmnq “ φpmqφpnq

Proof. We may assume m and n ą 1, for otherwise the result is trivial since φp1q “ 1.
Let us arrange the mn integers 1, 2, ..., mn into an array with n roots and m columns,
as follows:

1 2 3 ... m
m` 1 m` 2 m` 3 ... 2m
. . . ... .
. . . ... .
. . . ... .
pn´ 1qm` 1 pn´ 1qm` 2 pn´ 1qm` 3 ... nm

These integers i form a complete set of residues mod mn, so φpmnq is the number of
them coprime to mn, or equivalently satisfying gcdpi,mq “ gcdpi,nq “ 1. The integers
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in a given column are all congruent mod m; thus exactly φpmq of the columns consist
of integers i coprime to m, and the other columns consist of integers with gcdpi,mq ą 1.
Now each column of integers coprime to m has the form c, m`c, 2m`c, ..., pn´1qm`c,
for some c; for the previous lemma this is a complete set of residues mod n, since
A “ t0, 1, 2, ...,n ´ 1u is and since gcdpm,nq “ 1. Such a column therefore contains
φpnq integers coprime to n, so these φpmq columns yield φpmqφpnq integers i coprime
to both m and n. Thus φpmnq “ φpmqφpnq, as required. �

Remark 8.3.4. The result fails if gcdpm,nq ą 1: for instance 22 “ 4, but φp2q2 ‰ φp4q.

Example 8.3.5. The integers m “ 3 and n “ 4 are coprime, with φp3q “ φp4q “ 2,
here mn “ 12 and φp12q “ 2ˆ 2 “ 4.

Corollary 8.3.6. If n has prime-power factorization n “ pe1
1 ...p

ek
k then

φpnq “
k
ź

i“1

ppei
i ´ pei´1

i q “

k
ź

i“1

pei´1
i ppi ´ 1q “ n

k
ź

i“1

p1´ 1{piq “ n
ź

p|n

p1´ 1{pq

Proof. We can prove it by induction on the number k of the prime appearing on the
decomposition. We have proven the case k “ 1 before; Assume that k ą 1 and the
that the result is true for all integers divisible by fewer than k primes. We have n “
pe1

1 ...p
ek´1

k´1pek
k , where pe1

1 , ... , pek´1

k´1 and pek
k are coprime, so then

φpnq “ φppe1
1 ...p

ek´1

k´1qφpp
ek
k q

The induction hypothesis gives

φppe1
1 ...p

ek´1

k´1q “

k´1
ź

i“1

ppei
i ´ pei´1

i q

and we have seen that

φppek
k q “ pp

ek
k ´ pek´1

k q,

so by combining these two results we get

φpnq “
k
ź

i“1

ppei
i ´ pei´1

i q

�

Example 8.3.7. The primes dividing 60 are 2, 3 and 5, so

φp60q “ 60p1´ 1{2qp1´ 1{3qp1´ 1{5q “ 60ˆ 1{2ˆ 2{3ˆ 4{5 “ 16
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8.4 Application to cryptography

Important results to keep in mind

Recall Fermat’s Little Theorem:

Theorem 8.4.1 (Fermat’s Little Theorem). If p is prime and a is an integer not
divisible by p (that is, gcdpa, pq “ 1), then

ap´1
” 1 pmod pq.

Furthermore, for every integer a we have

ap
” a pmod pq.

Recall Euler’s φ-function:

φpnq “ the number of positive integers less than or equal to n
that are relatively prime to n

“ n´ the number of integers less than or equal to n
that are not relatively prime to n.

Example 8.4.2. 1. φp5q “ 4, because 1, 2, 3, 4 are all relatively prime to 5 and 5 is
not.

2. To compute φp10q, consider t1, 2,3, 4, 5, 6,7, 8,9, 10u. It is easy to see that
φp10q “ 4.

Remark 8.4.3. Let p, q be primes. Then

1. φppq “ p´ 1.

2. φppkq “ pk ´ pk´1 for any positive integer k.

3. φppqq “ pp´ 1qpq´ 1q.

Example 8.4.4. 1. t1,2,3,4,5,6, 7u, so φp7q “ 7´ 1.

2. t1, 2,3, 4,5, 6,7, 8u, so φp23q “ 23 ´ 22.

3. t1,2, 3,4, 5, 6,7,8, 9, 10,11, 12,13,14, 15u, so φp3 ¨ 5q “ p3´ 1qp5´ 1q.

Recall Euler’s φ-function

Theorem 8.4.5 (Euler’s Theorem). Let a and n be positive integers with gcdpa,nq “ 1.
Then

aφpnq ” 1 pmod nq.

Corollary 8.4.6. As a special case, when n “ p is a prime, then we get Fermat’s Little
Theorem:

ap´1
” 1 pmod pq.
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RSA

Cryptography has a lot of applications such as rock-paper-scissors over the phone
and authentication (e-signature). We will focus on sending a message securely. For
example, suppose Alice wishes to send the message “STOP” to Bob.

1. They use the following rule to get the numerical equivalent of each letter in
alphabet: A “ 01, B “ 02, ¨ ¨ ¨ , Z “ 26. For example, the numerical equivalent of
“CAT”is 030120. Conversely, the alphabetical equivalent of 13012008 is“MATH”.

2. Alice translates “STOP” into 19201516 and sends this number to Bob, and Bob
decodes 19201516 using the rule to get “STOP” back.

3. Problem is, in practice, it is very likely that a potential code breaker, say Char-
lie, also knows this rule. So if the code breaker Charlie intercepts the number
19201516, then he also knows what the original plain text was.

How to fix this problem? Alice and Bob may want to change the rule, say:

A “ 03, B “ 04, ¨ ¨ ¨ , X “ 26, Y “ 01, Z “ 02.

But this is not long-lived. There are several ways to figure out this new rule (e.g. fre-
quency analysis).
Another problem is: if Alice wants to send a message to Charlie, then now Alice and
Charlie must set up a different rule, because now Bob could be a possible code breaker!

As an idea of resolving this problem, in 1976, three researchers at M.I.T. – Ronald
Rivest, Adi Shamir, and Leonard Adleman came up with an idea now called the RSA
System.

1. Find φp143q. Since 143 “ 11ˆ 13, φp143q “ 10ˆ 12 “ 120.

2. Find φp3127q. Since 3127 “ 53ˆ 59, φp3127q “ 52ˆ 58 “ 3016.

KEY OBSERVATION

1. Computing 53 ˆ 59 “ 3127 is easy, but finding the prime factorization of 3127
(reverse process) is difficult!

2. If p, q are large primes (each with more than 200 digits, for example), then cal-
culating the product pq is not difficult with a computer, but when the product
pq is given, finding the individual prime numbers p, q is not easy, even with a
computer.

Central Idea of RSA

1. Alice chooses two (large) prime numbers pA and qA. She computes nA “ pAqA and
φpnAq “ ppA ´ 1qpqA ´ 1q. She then chooses a number eA so that gcdpeA, ppA ´

1qpqA´ 1qq “ 1 (this can be done without difficulty). Since gcdpeA, ppA´ 1qpqA´

1qq “ 1, there exist positive integers sA, tA such that sAeA´ tAppA´1qpqA´1q “ 1
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(Backward Euclidean Algorithm). Now she makes public the pair pnA, eAq but
does NOT disclose sA.

2. Bob does the same thing: he chooses two large prime numbers pB and qB, computes
nB “ pBqB, chooses eB, sB, and tB so that gcdpeB, ppB ´ 1qpqB ´ 1qq “ 1 and
sBeB ´ tBppB ´ 1qpqB ´ 1q “ 1, and makes public the pair pnB, eBq while concealing
sB.

3. Charlie does the same thing (makes pnC, eCq public, keeps sC), David does the
same thing (makes pnD, eDq public, keeps sD), etc.

How does Alice send a message to Bob?

1. Alice first translates her plain text to its numerical equivalent, say M.

2. She then looks up her phone book to find pnB, eBq.

3. Then she computes the remainder C of MeB when divided by nB (that is MeB ” C
(mod nB)).

4. Finally, Alice sends C to Bob.

Example 8.4.7. Let’s say pB “ 53 and qB “ 59. Then nB “ 53 ˆ 59 “ 3127 and
ppB ´ 1qpqB ´ 1q “ 52 ˆ 58 “ 3016. Pick eB “ 271, then gcdpeB, ppB ´ 1qpqB ´ 1qq “
gcdp271, 3016q “ 1. Using Backward Euclidean Algorithm, one can see that 2671¨271´
240 ¨3016 “ 1, which means sB “ 2671. Bob makes pnB, eBq “ p3127, 271q open to public
while concealing sB “ 2671.

1. To send “GO” (which is equivalent to M “ 715) to Bob, Alice looks up her phone
book to find pnB, eBq “ p3127, 271q.

2. She then computes the remainder C of MeB “ 715271 when divided by 3127. C
turns out to be 1657.

3. Alice sends C “ 1657 to Bob.

How does Bob decode C to get the plain text back?

1. Bob receives C.

2. He then computes the remainder of CsB when divided by nB. Note that

CsB ” pMeBq
sB “ MeBsB “ M1`tBppB´1qpqB´1q.

By Euler’s Theorem, MppB´1qpqB´1q ” 1 (mod nB) and this means that

MtBppB´1qpqB´1q
“ pMppB´1qpqB´1q

q
tB ” 1 pmod nBq.

Consequently,
CsB ” M,

which means that the remainder of CsB when divided by nB equals M.

3. With this M, Bob can easily recover the original plain text.

1. Bob received 1657.
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2. He then computes the remainder of 1657sB “ 16572671 when divided nB “ 3127,
which turns out to be 715.

3. Bob then recovers “GO”.

Why is RSA robust?

Suppose that Charlie was able to intercept C. To get the plain text M, he must
know sB. Recall that sB was determined so that sBeB ´ tBppB ´ 1qpqB ´ 1q “ 1, that is

sBeB ” 1 pmod ppB ´ 1qpqB ´ 1qq.

Since eB is known to Charlie, if Charlie knows φpnBq “ ppB ´ 1qpqB ´ 1q, then he can
actually find sB. But to get ppB ´ 1qpqB ´ 1q, Charlie should know pB and qB, and this
is almost impossible even though he knows what pBqB is.

Example 8.4.8. Suppose Charlie managed to get C “ 715. To obtain the plain text
M, he needs to know sB, which is hidden. If Charlie can find φpnBq “ φppBqBq “ ppB ´

1qpqB ´ 1q, then there is a way to find sB easily. Charlie knows pnB, eBq “ p3127, 271q,
but computing φpnBq “ φp3127q is difficult without knowing the prime factorization of
3127.

8.5 Modular arithmetic revisited by algebra

The chinese remainder theorem can be seen as follow

Theorem 8.5.1. Let m,n P Z and gcdpm,nq “ 1. then the natural map

ψ : Z{mnZÑ Z{mZˆZ{nZ

sending a mod mn to pa mod m, b mod nq yields an isomorphism of the rings Z{mnZ
and Z{mZˆZ{nZ.

Proof. It is clear that ψ is well defined and that it is a ring homomorphism. Further-
more, ψ is injective, for if we assume ψpaq “ ψpbq this means that a and b are equal
modulo m and n. So m and n both divide a´ b and since pm,nq “ 1, mn divides a´ b,
that is a ” b mod mn. Also, Z{mnZ and Z{mZ ˆ Z{nZ have the same cardinality
mn. Since an injective map between finite sets of the same cardinality is automatically
bijective, our theorem follows. �

As a consequence, arguing by induction we obtain.

Theorem 8.5.2. Let m1, ... , mn P Z and gcdpmi,m jq “ 1, for any i ‰ j. Let
m “ m1...mr. Then the map

ψ : Z{mZÑ pZ{m1Zq ˆ ...ˆ pZ{mrZq

given by
ψ : a mod m ÞÑ a mod m1, ..., a mod mr

yields a ring isomorphism.
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From this we can deduce automatically that:

Theorem 8.5.3. Let m1, ... , mn P Z and pmi,m jq “ 1, for any i ‰ j. Let m “ m1...mr.
Then the map

ψ : Um Ñ Um1 ˆ ...ˆUmr

given by

ψ : a mod m ÞÑ a mod m1, ..., a mod mr

yields a ring isomorphism.

Remark 8.5.4. 1. From cardinality consideration, since if m and n are integer such
that pm,nq “ 1 we have that φpmnq “ φpmqφpnq. (The multiplicity of the Euler
function).

2. We have already proven Fermat little theorem and Euler theorem with an algebraic
method.

3. Let p be a prime number. First we notice that the only number between 1 and
p´1 such that x “ x´1 are 1 and ´1 since then x2 “ 1 which implies that x “ ˘1
(since Z{pZ is a field). Now the pp ´ 1q ´ 2 remaining element can be taken by
pair inverse of each other. And we obtain easily that the product of pp´1q! which
is the product of all p´ 1 elements is equal to ´1 mod p.

Definition 8.5.5. Let m P N. An integer g such that g mod m generates the group
Um is called a primitive root modulo m.

Finding a primitive roots in Un (if they exist is a non-trivial problem, and there is
no simple solution. One obvious but tedious method is to ttry each of the φpnq units
a P Un in turn, each time computing powers ai mod n to find the order of a in Un; if we
find an element a of order φpnq then we know that this must be a primitive root. The
following result is a rather more efficient test for primitive roots:

Lemma 8.5.6. An element a P Un is a primitive root if and only if aφpnq{q ‰ 1 in Un
for each prime q dividing φpnq.

Proof. pñq If a is a primitive root, then it has order |Un| “ φpnq, so ai ‰ 1 for all i such
that 1 ď i ă φpnq; in particular, this applies to i “ φpnq{q for each prime q dividing
φpnq.
pðq If a is not a primitive root, then its has order |Un| “ φpnq, so ai ‰ 1 for all i such
that 1 ď i ă φpnq, so φpnq{k ą 1. If q is any prime factor of φpnq{k, then k divides
φpnq{q , so that aφpnq{q “ 1 in Un, against our hypothesis. Thus a must be a primitive
root. �

Theorem 8.5.7. If p is prime, then the group Up has φpdq elements of order d for each
d dividing p´ 1.

Proof. For each d dividing p´ 1 let us define:

Ωd “ ta P Up|a has order du and ωpdq “ |Ωd|
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the number of elements of order d in Up. Our aim is to prove that ωpdq “ φpdq for all
such d. We know by Lagrange’s theorem that the order of each element of Up divides
p´ 1, so the sets Ωd form a partition of Up and hence

ÿ

d|p´1

ωpdq “ p´ 1

But we know that
ÿ

d|p´1

φpdq “ p´ 1

so
ÿ

d|p´1

pφpdq ´ ωpdqq “ 0

If we can show that ωpdq ď φpdq for all d dividing p ´ 1, then each summand in
this expression is non-negative; since their sum is 0, the summands must all be 0, so
ωpdq “ φpdq, as required.
The inequality ωpdq ď φpdq is obvious if ωd is empty, so assume that ωd contains an
element a. By the definition of ωd, the powers ai “ a, a2, ..., ad (“ 1) are all distinct,
and they satisfy paiqd “ 1, so they are d distinct roots of the polynomial f pxq “ xd ´ 1
in Z{pZ; but we have seen that f pxq has at most degp f q “ d roots in Z{pZ, so these
are a complete set of roots of f pxq. We shall show that Ωd consists of those roots ai for
some i “ 1, 2, ..., d. If we let j denote gcdpi, dq, then

bd{ j
“ aid{ j

“ pad
q

i{ j
“ 1i{ j

“ 1

in Up; but d is the order of b, so no lower positive power of b than bd can be equal to 1,
and hence j “ 1. Thus every element b if order d has the form ai where 1 ď i ă d and
i is coprime to d. The number of such integers i is φpdq, so the number ωpdq of such
elements b is at most φpdq, and the proof is complete. �

Corollary 8.5.8. (Gauss theorem) If p is prime, then the group Up has φpdq elements
of order d for each d dividing p´ 1.

Proof. Putting d “ p ´ 1, in the previous theorem, we see that there are φpp ´ 1q
elements of order p ´ 1 in Up. Since φpp ´ 1q ě 1, the group contains at least one
element of this order. Now Up has order φppq “ p´1, so such an element is a generator
for Up and hence this group is cyclic. �

Example 8.5.9. As an illustration consider U17 and the powers of 3 modulo 17,
— 31 ” 3 mod17
— 32 ” 9 mod17
— 33 ” 10 mod17
— 34 ” 13 mod17
— 35 ” 5 mod17
— 36 ” 15 mod17
— 37 ” 11 mod17
— 38 ” 16 mod17
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— 39 ” 14 mod17
— 310 ” 8 mod17
— 311 ” 7 mod17
— 312 ” 4 mod17
— 313 ” 12 mod17
— 314 ” 2 mod17
— 315 ” 6 mod17
— 316 ” 1 mod17

Observe that the set t31, ..., 316u equals the set t1, 2, ..., 16u modulo 17. So 3 is a primitive
root modulo 17. Notice also that 24 ” 16 ” ´1 mod 17. Hence 28 ” 16 ” ´1 mod 17.
Hence 28 ” 1 mod17 and 2 is not a primitive root modulo 17.

Lemma 8.5.10. Let G be a finite abelian group. If ordpgq and ordphq are relatively
prime then ordpghq “ ordphqordpgq.

Proof. Let M “ oddpghq. From e “ pghqM it follows that e “ pghqMordpgq “ hMordphq.
Hence, ordphq|Mordpgq. Since pordpgq, ordphqq “ 1, we conclude that ordphq|M. Sim-
ilarly, ordpgq|M. hence ordpgqordphq|M. On the other hand, pghqordphqordpgq “ e an so
M|ordpgqordphq and thus we find that M “ ordpgqordphq. �

Lemma 8.5.11. Let p be an odd prime and r PN
1. p1` pqpr´1

” 1` pr mod pr`1.

2. 52r´2
” 1` 2r mod 2r`1, for all r ě 2.

Proof. 1. We use induction on r. For r “ 1 our statement is trivial. Let r ą 1 and
assume we proved

p1` pqp
r´2
” 1` pr´1 mod pr

In other words, p1 ` pqpr´2
“ 1 ` Apr´1 with A ” 1 mod p. Take the p-th power

on both sides, we get,

p1` pqpr´1
“ 1`

řp
t“1

`p
t

˘

pApr´1qt

” 1` pApr´1 `
`p

2

˘

pApr´1q2 mod pr`1

Because p is odd we have
`p

2

˘

” 0 mod p and we are left with

p1` pqp
r´1
” 1` Apr

” 1` pr mod pr`1

as asserted.

2. Use induction on r. For r “ 2 our statement is trivial. Let r ą 2 and assume we
proved

52r´3
” 1` 2r´1 mod 2r

In other words, 52r´3
“ 1` A2r´1 with A odd. Take squares on both sides,

52r´2
“ 1` A2r

` A2222r´2
” 1` 2r mod 2r`1

The latter congruence follows because A is odd and 2r´ 2 ě r` 1 if r ą 2. This
concludes the induction step.

�
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Theorem 8.5.12. Let p be an odd prime and k PN. Then Upk is a cyclic group.

Proof. For k “ 1, it is just Gauss theorem. So, let us assume k ą 1. Let g be a
primitive root modulo p and let ordpgq be its order in Upk . Since gordpgq “ 1 mod pk, we

have gordpgq ” 1 mod p. Moreover, g is a primitive root module p and thus p´ 1|ordpgq.
So h “ gordpgq{pp´1q has order p ´ 1 in Upk . from the previous lemma with r “ k

”
it follows that p1 ` pqpk´1

” 1 mod pk and the same lemma with r “ k ´ 1 implies

p1` pqpk´2
” 1´ pk´1 ı 1 mod pk. Hence, ordp1` pq “ pk´1. Now, by the first previous

lemma we know that pp` 1qh has order pp´ 1qpk´1 and so Upk is cyclic. �

Theorem 8.5.13. Let k be a integer greater that 3. Any element of U2k can be written
uniquely in the form p´1qm5t mod 2k with m P t0, 1u, 0 ď t ă 2k´2.

Proof. By the second part of the pervious lemma, with r “ k we find 52k´2
” 1 mod 2k

and with r “ k ´ 1 we find 52k´3
” 1` 2k´1 ı 1 mod 2k. So, ordp5q “ 2k´2. Notice that

all elements 5t, 0 ď t ă 2k´2 are distinct and ” 1 mod 4. Hence the remaining element
of U2k are given by ´5t, 0 ď t ă 2k´2. �

Remark 8.5.14. Not that this theorem implies that U2k is isomorphic to the product
of a cyclic group of order 2 and a cyclic group of order 2k´2 when k ě 3. Of course, U4
and U2 are cyclic.
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Chapter 9

Quadratic reciprocity

9.1 The legendre symbol

In this section we shall consider quadratic equations in Z{mZ and study an impor-
tant criterion for the solubility of x2 ” a mod p, where p is an odd prime (quadratic
reciprocity).

Definition 9.1.1. Let p be an odd prime and a P Z not divisible by p. Then a is called
a quadratic residue mod p if x2 ” a mod p has a solution and a quadratic non
residue modulo p if x2 ” a mod p has no solution.

Example 9.1.2. The quadratic residues modulo 13 read: 1, 4, 9, 3, 12, 10 and the
quadratic non residues are 2, 5, 6, 7, 8, 11.

Definition 9.1.3. Let p be an odd prime. The Legendre symbol is defined by

ˆ

a
p

˙

“

$

&

%

1 if a is quadratic residue mod p
´1 if a is quadratic non residue mod p
0 if p|a.

9.2 Euler’s Criterion

Proposition 9.2.1 (Euler’s Criterion). Let p be an odd prime and a an integer not
divisible by p.

1. There are exactly pp ´ 1q{2 quadratic residues mod p and pp ´ 1q{2 quadratic
non-residue mod p

2. x2 ” a mod p has a solution if and only if

app´1q{2
” 1 mod p.

More precisely,
ˆ

a
p

˙

” app´1q{2 mod p

83
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Proof. 1. Consider the residue classes 12, 22, ..., ppp ´ 1q{2q2 mod p. Since a2 ”

p´aq2 mod p, these are all quadratic residues modulo p. They are also distinct,
from a2 ” b2 mod p would follow a ” ˘b mod p and when 1 ď a, b ď pp´1q{2 this
implies a “ b. So there are exactly pp ´ 1q{2quadratic residues modulo p. The
remaining p ´ 1 ´ pp ´ 1q{2 “ pp ´ 1q{2 residue classes are of course quadratic
non residues.

2. Clear, if a ” 0 mod p. So assume, a ı 0 mod p. Since papp´1q{2q2 ” ap´1 ” 1 mod p
by Fermat’s little theorem we see that app´1q{2 ” ˘1 mod p. Suppose that a
is a quadratic residue, i.e there is an integer x such that x2 ” a mod p. Then
1 “ xp´1 ” px2qpp´1q{2 ” app´1q{2 mod p, which proves half of our assertion. Since
we work in the field Z{pZ, the equation xpp´1q{2 ” 1 mod p has at most pp´ 1q{2
solutions. We know these solutions to be the pp´1q{2 quadratic residues. Hence,
app´1q{2 ” ´1 mod p, for any quadratic non residue a mod p.

�

Corollary 9.2.2. Let p be an odd prime and a, b P Z. Then,
ˆ

a
p

˙ˆ

b
p

˙

“

ˆ

ab
p

˙

Proof.
ˆ

a
p

˙ˆ

b
p

˙

” app´1q{2bpp´1q{2
” pabqpp´1q{2

”

ˆ

ab
p

˙

mod p

Because Legendre symbols can only be 0, ˘1 and p ě 3, the strict equality
´

a
p

¯´

b
p

¯

“
´

ab
p

¯

follows. �

Corollary 9.2.3. Let p be an odd prime. Then,
´

1
p

¯

“ 1 and

ˆ

´1
p

˙

“

"

1 i f p ” 1 mod 4
´1 i f p ” ´1 mod 4

Proof. Of course,
´

1
p

¯

“ 1 is trivial. Also, we know that
´

´1
p

¯

” p´1qpp´1q{2 mod p.

Since p ě 3 strict equality follows. �

Example 9.2.4. Suppose p “ 11. By squaring each element of pZ{11Zq˚, we see
exactly which numbers are squares modulo 11:

12
“ 1, 22

“ 4, 32
“ 9, 42

“ 5, 52
“ 3, 62

“ 3, 72
“ 5, 82

“ 9, 92
“ 4, 102

“ 1.

Thus the squares are t1, 3, 4, 5, 9u. Next, we compute app´1q{2 “ a5 for each a P pZ{11Zq˚.

15
“ 1, 25

“ ´1, 35
“ 1, 45

“ 1, 55
“ 1, 65

“ ´1, 75
“ ´1, 85

“ ´1, 95
“ 1, 105

“ ´1.

The a with a5 “ 1 are t1, 3, 4, 5, 9u, which is exactly the same as the set of squares, just
as Proposition 9.2.1 predicts.
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Remark 9.2.5. Proposition 9.2.1 can be reformulated in more group-theoretic language
as follows. The map

pZ{pZq˚ Ñ t˘1u
that sends a to app´1q{2 mod p is a homomorphism of groups, whose kernel is the subgroup
of squares of elements of pZ{pZq˚.

9.3 The Quadratic Reciprocity Law

The symbol
´

a
p

¯

only depends on the residue class of a modulo p. Thus tabulating

the value of
`

a
5

˘

for hundreds of a would be silly. Would it be equally silly to make a

table of
´

5
p

¯

for hundreds of primes p? Let’s begin making such a table and see whether

or not there is an obvious pattern.

p
´

5
p

¯

p mod 5

7 ´1 2
11 1 1
13 ´1 3
17 ´1 2
19 1 4
23 ´1 3
29 1 4
31 1 1
37 ´1 2
41 1 1
43 ´1 3
47 ´1 2

The evidence suggests that
´

5
p

¯

depends only on the congruence class of p; more pre-

cisely,
´

5
p

¯

“ 1 if and only if p ” 1, 4 pmod 5q, i.e., p is a square modulo 5. Similarly

it turns out that
´

3
p

¯

“ 1 if and only if p ” ˘1 mod 12.

Starting from such observations Euler conjectured the quadratic reciprocity law. Leg-
endre gave an incomplete proof of it and late Gauss managed to give several complete
proofs. Here, we give a proof which is basically a version given by Eisenstein.

Theorem 9.3.1 (The Law of Quadratic Reciprocity). Suppose that p and q are odd
primes. Then

ˆ

p
q

˙

“ p´1q
p´1

2 ¨
q´1

2

ˆ

q
p

˙

.

In the case considered above, this theorem implies that
ˆ

5
p

˙

“ p´1q2¨
p´1

2

´p
5

¯

“

´p
5

¯

“

#

`1 if p ” 1, 4 pmod 5q
´1 if p ” 2, 3 pmod 5q.
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Thus the quadratic reciprocity law “explains” why knowing p modulo 5 helps in com-

puting 5
p´1

2 mod p.

9.4 A Lemma of Gauss

Definition 9.4.1. The residue classes 1, 2, ..., pp ´ 1q{2 mod p are called positive,
the residue classes ´1, ´2, ..., ´pp´ 1q{2 mod p are called negative.

Lemma 9.4.2. Let p be an odd prime and let a be an integer ı 0 mod p. Form the
numbers

a, 2a, 3a, . . . ,
p´ 1

2
a

and reduce them modulo p to lie in the interval p´
p
2 ,

p
2q. Let µ be the number of negative

residue classes mod p. Then
ˆ

a
p

˙

“ p´1qµ.

Proof. In defining ν, we expressed each number in

S “
"

a, 2a, . . . ,
p´ 1

2
a
*

as congruent to a number in the set
"

1,´1, 2,´2, . . . ,
p´ 1

2
,´

p´ 1
2

*

.

No number 1, 2, . . . p´1
2 appears more than once, with either choice of sign, because if

it did then either two elements of S are congruent modulo p or 0 is the sum of two
elements of S, and both events are impossible. Thus the resulting set must be of the
form

T “
"

ε1 ¨ 1, ε2 ¨ 2, . . . , εpp´1q{2 ¨
p´ 1

2

*

,

where each εi is either `1 or ´1. Multiplying together the elements of S and of T, we
see that

p1aq ¨ p2aq ¨ p3aq ¨ ¨ ¨ ¨ ¨
ˆ

p´ 1
2

a
˙

” pε1 ¨ 1q ¨ pε2 ¨ 2q ¨ ¨ ¨
ˆ

εpp´1q{2 ¨
p´ 1

2

˙

mod p,

so
app´1q{2

” ε1 ¨ ε2 ¨ ¨ ¨ ¨ ¨ εpp´1q{2 mod p.

The lemma then follows from Proposition 9.2.1. �

Theorem 9.4.3. Let p be an odd prime. Then,
´

2
p

¯

“

"

1 i f p ” ˘1 mod 8
´1 i f p ” ˘3 mod 8
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Proof. We apply Gauss’ lemma. To do so we must count µ, the number of negative
residue among 2, 4, ..., p´ 1 mod p. So,

µ “ 7tn even|pp` 1q{2 ď n ď p´ 1u “ 7tn|pp` 1q{4 ď n ď pp´ 1q{2u

Replace n by pp` 1q{2´ n to obtain

µ “ 7tn|1 ď n ď pp` 1q{4u “ rpp` 1q{4s

This implies that µ is even if p ” ˘1 mod 8 and µ is odd if p ” ˘3 mod 8. Gauss’
lemma now yields our assertion. �

Remark 9.4.4. Notice that
ˆ

2
p

˙

“ p´1qpp
2´1q{8

Another consequence of Gauss’ lemma is the following lemma which will be needed
in the proof if the quadratic reciprocity law.

Lemma 9.4.5. Let p be an odd prime and a P Z odd and not divisible by p. Define

Spa, pq “
pp´1q{2
ÿ

s“1

rpasq{ps

Then,
ˆ

a
p

˙

“ p´1qSpa,pq

Proof. According to Gauss’ lemma we have
´

a
p

¯

“ p´1qµ where µ is the number of

negative residue classes among a, 2a, ..., pp´ 1q{2a mod p. Let 1 ď s ď pp´ 1q{2. If sa
mod p is a positive residue class we write sa “ rpsaq{psp`us with 1 ď us ď pp´1q{2. If sa
mod p is a negative residue class, we write sa “ rpsaq{psp`p´us with 1 ď us ď pp´1q{2.
A straightforward check shows that tu1,u2, ...,upp´1q{2u “ t1, 2, ..., pp ´ 1q{2u. Addition
of these equalities yields

pp´1q{2
ÿ

s“1

sa “ p
pp´1q{2
ÿ

s“1

rpsaq{ps ` µp`
pp´1q{2
ÿ

s“1

p˘usq

Take both sides modulo 2,

řpp´1q{2
s“1 s ” Spa, pq ` µ`

řpp´1q{2
s“1 us mod 2

” Spa, pq ` µ`
řpp´1q{2

s“1 s mod 2

The summations on both sides cancel and we are left with Spa, pq ” µ mod 2 hence
´

a
p

¯

“ p´1qµ “ p´1qSpa,pq. �
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Theorem 9.4.6. (Quadratic reciprocity law) Let p, q be two odd prime numbers. Then,
ˆ

p
q

˙ˆ

q
p

˙

“ p´1qpp´1q{2pq´1q{2

Alternatively,
´

p
q

¯

“

´

q
p

¯

unless p ” q ” ´1 mod 4, in which case we have
´

p
q

¯

“ ´

´

q
p

¯

Proof. Let Spa, pq be as in the previous lemma. Then we assert

Spq, pq ` Spp, qq “ pp´ 1q{2pq´ 1q{2

To see this, picture the rectangle r0, p{2s ˆ r0, q{2s and the lattice points pm,nq P N2

with 1 ď m ď pp ´ 1q{2, 1 ď n ď pq ´ 1q{2 inside it. The diagonal connecting p0, 0q
and pp{2, q{2q does not pass though any of the lattice points. Notice that the number
of lattice points below the diagonal is precisely Spp, qq and above the diagonal Spq, pq.
In total, there are pp´ 1q{2pq´ 1q{2 lattice points, hence our assertion follows. We can
now combine our assertion with the previous lemma to obtain

ˆ

p
q

˙ˆ

q
p

˙

“ p´1qSpp,qq`Spq,pq
“ p´1qpp´1q{2pq´1q{2

�

Example 9.4.7. Is 6 a square modulo 389? We have
ˆ

6
389

˙

“

ˆ

2 ¨ 3
389

˙

“

ˆ

2
389

˙

¨

ˆ

3
389

˙

“ p´1q ¨ p´1q “ 1.

Here, we found that
`

2
389

˘

“ ´1 and that 389 ” 3 mod 8. We found
`

3
389

˘

as follows:

ˆ

3
389

˙

“

ˆ

389
3

˙

“

ˆ

2
3

˙

“ ´1.

Thus 6 is a square modulo 389.

9.4.1 A group theoretic proof

It is know that Gauss gave six (more or less) different proofs of the quadratic reci-
procity law. Since then the number of proof has increased dramatically to an estimated
200. The proof we have given above is essentially due to Eisenstein. In the article
”On the quadratic reciprocity law” in J. Australian Math. Soc. 51(1991), 423-425 by
G. Rousseau, we find a proof of the reciprocity law which is surprisingly simple if one
acquainted with the elementary group theory. It turns out to be an application of the
Chinese remainder theorem and we like to present it here.

Proof. (The quadratic reciprocity law): Let notations be as in the theorem. We work
in the group G “ pUp ˆUqq{U where U “ tp1, 1q, p´1,´1qu. Clearly,

tpi, jq|i “ 1, ..., p´ 1; j “ 1, 2, ..., pq´ 1q{2u
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is a full set of representative of G. Their product π equals

π ” ppp´ 1q!pq´1q{2, ppq´ 1q{2q!p´1
q

Since,
ppq´ 1q{2q!2

” p´1qpq´1q{2
pq´ 1q! mod q

we get
π ” ppp´ 1q!pq´1q{2, p´1qpq´1q{2ˆpp´1q{2

pq´ 1q!pp´1q{2
q

Another full set of representatives of G is given by

tpk mod p, k mod qq|k “ 1, 2, ..., ppq´ 1q{2; pk, pqq “ 1u

This is a consequence of Upq » Up ˆUq, (chinese remainder theorem). The product of
these elements modulo p equals

p
śp´1

i“1 ipp` iqp2p` iq...p q´3
2 p` iqq

śpp´1q{2
i“1 p

q´1
2 p` iq

1ˆ qˆ 2qˆ ...ˆ p´1
2 q

which equals

pp´ 1q!pq´1q{2
{qpp´1q{2

” pp´ 1q!pq´1q{2

ˆ

q
p

˙

mod p

Similarly we compute the product modulo q and we obtain:

π “ ppp´ 1q!pq´1q{2

ˆ

q
p

˙

, pq´ 1q!pp´1q{2

ˆ

p
q

˙

q.

Comparison of the two expression for π yields

p1, p´1qpp´1q{2ˆpq´1q{2
q ” p

ˆ

q
p

˙

,

ˆ

p
q

˙

q ” p1,
ˆ

q
p

˙ˆ

p
q

˙

q

and hence the reciprocity law. �

9.4.2 Applications

Example 9.4.8. 1. Is x2 ” 84 mod 97 solvable ? Notice that
ˆ

84
97

˙

“

ˆ

4
97

˙ˆ

3
97

˙ˆ

7
97

˙

“

ˆ

97
3

˙ˆ

97
7

˙

“

ˆ

1
3

˙ˆ

´1
7

˙

“ 1ˆ´1 “ ´1

Hence our congruence equation is not solvable.

2. Is 3x2`4x`5 ” 0 mod 76 solvable? According to the Chinese remainder theorem
this congruence is equivalent to the system of congruences

3x2 ` 4x` 5 ” 0 mod 4
3x2 ` 4x` 5 ” 0 mod 19

The first equation is equivalent to x2 ” 1 mod 4, which is solvable. Multiply the
second by 13 on both sides to obtain x2 ` 14x` 8 ” 0 mod 19. After splitting off
squares, px ` 7q2 ” 3 mod 19. Since

`

3
19

˘

” ´
`

19
3

˘

“ ´1, the second congruence
equation is not solvable.
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3. Let p be an odd prime. Then,

ˆ

´3
p

˙

“
1 i f p ” 1 mod 3
´1 i f p ” ´1 mod 3

This follows from
ˆ

´3
p

˙

“

ˆ

´1
p

˙ˆ

3
p

˙

“ p´1qpp´1q{2
ˆ p´1qpp´1q{2

´p
3

¯

“

´p
3

¯

Since 1 is a quadratic residue modulo 3 and ´1 a quadratic non residue our
assertion follows.

4. Let En be the integer whose digits in base 10 consist of n ones e.g. E13 “

1111111111111. These numbers are known as reunits. Alternatively En “

p10n ´ 1q{9. As an example, we like to show here that E33 is divisible by 67.
We easily verify that

ˆ

10
67

˙

“

ˆ

2
67

˙ˆ

5
67

˙

“ ´

ˆ

67
5

˙

“ ´

ˆ

2
5

˙

“ 1

Hence, by Euler’s criterion, 1033 ” 1 mod67 and hence 67|E33.
Extensive calculations show that among the numbers En with n ă 50000 only

E2,E19,E23,E317,E1031

are prime and E49081 is probably prime.

Theorem 9.4.9. Let p be a prime such that p ” ´1 mod 4 and 2p ` 1 prime. Then
2p` 1 divides 2p ´ 1.

Proof. Note that 2p ` 1 is a prime which is 7 mod 8. Hence
´

2
2p`1

¯

“ 1. Then, by

Euler’s criterion,

2p
”

ˆ

2
2p` 1

˙

” 1 mod 2p` 1

�

As a corollary we see that the Mersenne numbers

213
´ 1, 283

´ 1, 2131
´ 1

are not prime. For p ă 10000 there are 100 values for which the previous Theorem
applies. We also note that if p is a prime, then any prime divisor q of 2p ´ 1 has the
form q “ 2pk` 1. So, when looking for prime divisors of 2p ´ 1 it makes sense to start
by trying 2p` 1.

Theorem 9.4.10. (Pépin, 1877) For any n PN let Fn “ 22n
` 1. Then, Fn is prime if

and only if 31{2pFn´1q ” ´1 mod Fn
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Proof. ñ Because Fn is an odd prime we have

31{2pFn´1q
”

ˆ

3
Fn

˙

”

ˆ

Fn

3

˙

”

ˆ

´1
3

˙

” ´1 mod Fn

The second to last congruence follows from

22n
` 1 ” p´1q2

n
` 1 ” 1` 1 ” ´1 mod 3

ð Notice that Fn ´ 1 “ 22n
and 3Fn´1 ” 1 mod Fn. Hence ordp3q divides 22n

and equals
2r for some 0 ď r ď 2n. Suppose r ă 2n then we would have 3pFn´1q{2 ” 1 mod Fn,
contradicting our assumption. Hence, r “ 2n and op3q “ Fn ´ 1. In general, if we have
a P Z such that ordpaq in Um is m ´ 1 then m must be prime. In particular, Fn is
prime. �

9.4.3 Jacobi symbols

To determine the Legendre symbol
`

111
137

˘

say, we must first factor 111 before being
able to apply quadratic reciprocity. This is all right for small numbers likes 111, but
what to do if we want to compute

`

11111111111
197002597249

˘

? (197002597249 is prime) or Legendre
symbols with even larger numbers? We know that factorization of large numbers is
a major computational problem. Luckily this does not mean that the computation of
Legendre symbols becomes difficult. The solution is to use the slightly more general
Jacobi symbol.

Definition 9.4.11. Let n P N be odd and m P Z such that pm,nq “ 1. Let n “ p1...pr
be the prime factorization of n. The Jacobi symbol

`

m
n

˘

is defined by

´m
n

¯

“

ˆ

m
p1

˙ˆ

m
p2

˙

...

ˆ

m
pr

˙

where the symbols
´

m
pi

¯

are the Legendre symbols.

Remark 9.4.12. Note that if
`

m
n

˘

“ ´1 then x2 ” m mod n is not solvable simply

because x2 ” m mod pi is not solvable for some i. on the other hand, if
`

m
n

˘

“ 1, we

cannot say anything about the solubility of x2 ” m mod n. For example,
`

´1
21

˘

“ 1 but

x2 ” ´1 mod 21 is certainly not solvable.

Theorem 9.4.13. Let m, n be odd positive integers. Then,

1.
ˆ

´1
n

˙

“ p´1q
n´1

2

2.
ˆ

2
n

˙

“ p´1q
n2´1

8
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3.
´m

n

¯´ n
m

¯

“ p´1q
m´1

2 ˆ
n´1

2

Proof. These statement can be proved by using the corresponding theorems, for the
Legendre symbol and the observation that for any r-tuple of odd numbers u1, ..., ur, we
have

u1 ´ 1
2

` ....`
ur ´ 1

2
”

u1...ur ´ 1
2

mod 2

To be more precise the sum on the left is modulo 2 equal to the number k of ui which
are ´1 mod 4. If k is even, the product u1....ur is 1 mod 4 and the term on the right is
also even. If k is odd, we have u1...ur ” ´1 mod 4, hence the term on the right is also
odd.
Let n “ p1...pr be the prime factorization of n. Then 1. follows from

ˆ

´1
n

˙

“

ˆ

´1
p1

˙

...

ˆ

´1
pr

˙

“ p´1q
p1´1

2 `...`
pr´1

2

and
p1 ´ 1

2
` ...`

pr ´ 1
2

”
p1...pr ´ 1

2
”

n´ 1
2

mod 2

Similarly, 2. follows from
ˆ

2
n

˙

“

ˆ

2
p1

˙

...

ˆ

2
pr

˙

“ p´1q
p2
1´1

8 `...`
p2

r ´1
8

and
p2

1 ´ 1
8

` ...`
p2

r ´ 1
8

”
pp1...prq

2 ´ 1
8

”
n2 ´ 1

8
mod 2

Let m “ q1...qs be the prime factorization of m. Then, 3. follows from

´m
n

¯´ n
m

¯

“
ź

i, j

ˆ

qi

p j

˙ˆ

p j

qi

˙

“ p´1q
ř

i, j
p j´1

2 ˆ
qi´1

2

and
ÿ

i, j

p j ´ 1
2

qi ´ 1
2

”
ÿ

i

qi ´ 1
2

ÿ

j

p j ´ 1
2

”
m´ 1

2
n´ 1

2
mod 2

�

Example 9.4.14. The computation of
`

11111111111
197002597249

˘

can now be done using a euclidean-
like algorithm and the previous theorem. Notice that

197002597249 “ 1711111111111` 8113708362
8113708362 “ 2ˆ 4056854181
11111111111 “ 2ˆ 4056854181` 2997402749
... ...
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Hence,
`

11111111111
197002597249

˘

“
`

197002597249
11111111111

˘

“
`

8113708362
11111111111

˘

“
`

2
11111111111

˘ `

4056854181
11111111111

˘

“
`

11111111111
4056854181

˘

“ ...

We keep repeating these steps of the inversion and extraction of 2 until we find the value
of the Jacobi symbol to be 1. From this algorithm we see that computation of Jacobi
symbols, and hence Legendre symbols, is polynomial in the length of the input.
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Chapter 10

Continued fractions

10.1 Introduction

Definition 10.1.1. Every real number x is represented by a point on the real line, and
falls between two successive integers, say n and n` 1:

n ď x ă n` 1

The integer n is often called the floor of x, and is written as:

n “ rxs

The number txu “ x´n satisfies 0 ď txu ă 1. Thus, for a given real x there is a unique
decomposition,

x “ rxs ` txu
where n is an integer and txu satisfies 0 ď txu ă 1 On the case where x is an integer,
then n “ x and txu “ 0.
This decomposition is called the mod one decomposition of a real number.

Definition 10.1.2. Let α P R. The continued fraction algorithm for α runs as
follows as long as xn ‰ 0.

x0 “ α
a0 “ rx0s, x1 “ 1{tx0u

a1 “ rx1s, x2 “ 1{tx1u

...
an “ rxns, xn`1 “ 1{txnu

...

Notice that xi ě 1, for all i ě 1. The algorithm is said to terminate if txnu “ 0 for
some n. Notice that

α “ a0 `
1
tx1u

“ a0 `
1

a1 `
1
tx2u

“ a0 `
1

a1 `
1

a2`...

which is denoted as

α “ ra0, x1s “ ra0, a1, x2s “ ra0, a1, a2, ....s

95
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Theorem 10.1.3. The continued fraction algorithm terminates if and only if α P Q.

Proof. Then α “ ra0, ...., an´1s and we see trivially that α P Q. If α P Q, then the xi are
all rational numbers, say xi “ pi{qi, with pi, qi P N and pi ą qi for all i. Notice that
qi`1 “ pi ´ rpi{qisqi, for all i, hence q1 ą q2 ą q3 ą ... ą 0. So we see that the algorithm
terminates.
In fact, when α is rational, α “ p{q then the continued fraction algorithm is nothing
but the Euclidean algorithm applied to p and q �

Theorem 10.1.4. Let a0, a1, ..., an P R. Suppose

p´2 “ 0, p´1 “ 1, p0 “ a0, pn “ anpn´1 ` pn´2 pn ě 0q
q´2 “ 1 q´1 “ 0 q0 “ 1 qn “ anqn´1 ` qn´2 pn ě 0q

Then,

ra0, a1, ..., ans “
pn

qn

Proof. By induction on n we shall show that

ra0, ..., ans “
anpn´1 ` pn´2

anqn´1 ` qn´2

For n “ 0 this is trivial. Now suppose n ě 0. Notice that

ra0, a1, ...an, an`1s “ ra0, a1, ..., an´1, an `
1

an`1
s

“
pan`

1
an`1

qpn´1`pn´2

pan`
1

an`1
qqn´1`qn´2

“
an`1panpn´1`pn´2q`pn´1

an`1panqn´1`qn´2q`qn´1

“
an`1pn`pn´1

an`1qn`qn´1

which completes our induction step. �

Definition 10.1.5. From now on we shall adhere to the notation α “ ra0, a1, ....s,
ra0, ..., ans “ pn{qn for the continued fraction expansion of α. We call a0, a1, a2, ... the
partial fractions of the continued fraction expansion of α and the pn{qn the
convergents

Why the pn{qn are called convergence will become clear from the following theorem.

Theorem 10.1.6. Let notation be as above. Then, for all n ě 0,

1. pn´1qn ´ pnqn´1 “ p´1qn.

2.

α´
pn

qn
“

p´1qn

qnpxn`1qn ` qn´1q

Proof. 1. By induction on n, the case n “ 0 being trivial, suppose now that the
property is true for some integer n, we shall prove it for n` 1,

pnqn`1´pn`1qn “ pnpan`1qn`qn´1q´pan`1pn`pn´1qqn “ ´ppn´1qn´pnqn´1q “ p´1qn`1

by the induction property.
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2. It follows from α “ ra0, a1, ..., an, xn`1s “
xn`1pn`pn´1

xn`1qn`qn´1
and a straightforward compu-

tation of the difference α´ pn

qn
.

�

Corollary 10.1.7. For all convergents pn{qn, we have

|α´
pn

qn
| ă

1
qn`1qn

ă
1

an`1q2
n

Remark 10.1.8. 1. By definition, qn “ anqn´1 ` qn´2. Since 1 ď an and qn´2 ą 0,
we conclude that qn is strictly increasing as n increases. Then we may conclude
that the continued fraction of a number converges to that number by the inequality
just given in the corollary. In other words,

α “ limnÑ8
pn

qn
“ ra0, a1, a2, ....s

2. We see from the previous corollary that convergence p{q of the continued fraction
of an irrational number α have the property that

|
p
q
´ α| ă

1
q2

In particular this means the convergent give very good rational approximations
with respect to their denominator. As an example, consider

π “ r3, 7, 15, 1, 292, 1, 1, 1, 2, 1...s

From the theory we expect that |π ´ p{q| ă 1{p292q2q where p{q “ r3, 7, 15, 1s
which equals 355{113. In fact,

π “ ´
355
113

“ ´0, 000000266764

and 355{113 approximates π up to 6 decimal places.

Theorem 10.1.9. (Legendre) Suppose α P R and p, q P Z, q ą 0 such that

|
p
q
´ α| ă

1
2q2

Then p{q is a convergent of the continued fraction of α.

Proof. Since pqnqn form a strictly increasing sequence of positive integers. Therefore,
for some n, qn ď q ď qn`1. Let us assume p{q ‰ pn{qn, otherwise we are done. Then we
have the following inequalities,

1
qqn

ď |
p
q
´

pn

qn
| ď |α´

pn

qn
| ` |α´

p
q
| ď

1
qnqn`1

`
1

2q2
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Multiply these inequalities with qqn to obtain 1 ă qn

2q `
q

qn`1
. When qn`1 ě 2q, we find,

using qn ď q that 1 ă 1{2 ` 1{2 which is a contradiction. So let us assume qn`1 ă 2q.
We now repeat our estimates with a little more care. Suppose first that α ´ p{q and
α´pn{qn have the same sign. Then the absolute value of their difference, which is equal
to |p{q ´ pn{qn|, is bounded above by maxp1{p2q2q, 1{pqnqn`1q. It is bounded below by
1{pqqnq. Multiplication by qqn yields 1 ă maxpqn{p2qq, q{qn`1q ă maxp1{2, 1q “ 1, again
a contradiction.
Now suppose that α ´ p{q and α ´ pn{qn have opposite sign. Then, by Theorem
10.1.6, α ´ p{q and α ´ pn`1{qn`1 have the same sign. Just as above we derive
1 ă maxpqn`1{p2qq, q{qn`2q. Using qn`1 ă 2q we find 1 ă maxp1, 1q “ 1, again a
contradiction. �

Here is a very useful lemma in all that follows.

Lemma 10.1.10. Let α “ ra0, a1, ..., am, βs. Then ´1{β “ ram, ..., a2, a1, a0,´1{αs.

Proof. This goes by induction on m. For m “ 0, the lemma is clear,

α “ ra0, βs ñ α “ a0 `
1
α
ñ ´

1
β
“ a0 `

1
´ 1
α

ñ ´
1
β
“ ra0,´

1
α
s

Suppose m ą 0. Then, α “ ra0, ..., am´1, am ` 1{βs. By the induction hypothesis we
obtain

´
1

am `
1
β

“ ram´1, ..., a1, a0,´
1
α
s

Invert on both sides and add am to obtain

´
1
β
“ ram, ..., a2, a1, a0,´

1
α
s

�

10.2 Continued fractions for quadratic irrationals.

Note that there does not seem to be any regularity in the continued fraction of π.
Here are some other examples of continued fraction expansions:

e “ r2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, ...s
e2 “ r7, 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, 1, 1, ...s
e3 “ r20, 11, 1, 2, 4, 3, 1, 5, 1, 2, 16, 1, 1, 16, 2, 13, 14, 4, 6, 2, 1, 1, 2, 2, ...s?

2 “ r1, 2, 2, 2, 2, 2, 2, ....s?
97 “ r9, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, ...s?
47 “ r6, 1, 5, 1, 12, 1, 5, 1, 12, 1, 5, 1, 12, 1, 5, 1, ...s

It is interesting to not the regularity in the expansion of
?

N, but not in e3. We shall
return to the periodicity of the expansion of

?
N in the section.
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Definition 10.2.1. A real, non-rational number α which satisfies a polynomial equation
of degree 2 over Q is called a quadratic irrational. Given a quadratic irrational
there exist, up to common sign change, a unique triple of integers A, B, C such that
Aα2 ` Bα ` C “ 0 and gcdpA,B,Cq “ 1, AC ‰ 0. The polynomial AX2 ` BX ` C
is called the minimal polynomial of α. The number D “ B2 ´ 4AC is called the
discriminant of α/ If α “ a`b

?
D for some a, b P Q, we call a´b

?
D its conjugate

and denote it by ᾱ. A quadratic irrational α is called reduced if α ą 1 and ´1 ă ᾱ ă 0.

Theorem 10.2.2. Let α be a quadratic irrational of discriminant D. Put x0 “ α and
define recursively xn`1 “ 1{pxn ´ rxnsq. Then each xn has discriminant D and there
exists n0 such that xn is reduced for all n ą n0 such that xn is reduced for all n ą n0.

Proof. That the discriminant does not change is clear if we realize that α and α´m have
the same discriminant for any m P Z and that α and 1{α have the same discriminant.
Denote by xn the conjugate of xn. Notice that xn ą 1 for all n ě 1. Verify also that if
xn is reduced the same holds for xn`1, xn`2,...
Let m be the smallest index such that rxms ‰ rxms. If such an m would not exist, both
α and α have the same continued fraction expansion.
Suppose that rxms ă rxms. Then notice that xm`1 “ 1{pxm ´ rxmsq ă 0. From xm`2 “

1{pxm`1 ´ rxm`1sq and xm`1 ă 0 we then conclude that ´1 ă xm`2 ă 0 hence xm`2 is
reduced.
Now suppose that rxms ą rxms. Then xm`1 “ 1{pxm ´ rxmsq ă 1. Hence rxms “ 0 ă rxms

and we continue as in the preceding case. �

Theorem 10.2.3. There exist finitely many reduced quadratic irrationals of given dis-
criminant D.

Proof. Let α be such a quadratic irrational and write α “
?

D`P
Q with P,Q P Z, Q ‰ 0

( we take
?

D ą 0).
From α ą 0 ą α, it follows that Q ą 0. From α ą 1 ą α, it follows that 2P{Q ą 0,
hence P ą 0. From α ă 0, it follows that P ´

?
D ă 0, hence P ă

?
D. From α ą 1,

we conclude P`
?

D ą Q, hence Q ă 2
?

D.
Concluding, we find that 0 ă P ă

?
D and 0 ă Q ă 2

?
D, hence we have at most

finitely many possibilities.
�

Definition 10.2.4. Let ra0, a1, a2, ...s be the continued fraction expansion of a real num-
ber. We say that the expansion is periodic if there exist n0 P Z, N P Z, such that
an`N “ an for all n ě n0. We call the expansion purely periodic if n0 “ 0.

Theorem 10.2.5. Let α P R. Then the continued fraction expansion of α is periodic if
and only if α is a quadratic irrational. It is purely periodic if and only if α is reduced.

Proof. We first prove our theorem for purely periodic expansions. Suppose α has a
purely periodic continued fraction. Then there exists an r such that α “ ra0, a1, ..., ar, αs.
Hence,

α “
αpr ` pr´1

αqr ` qr´1
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This implies qrα2 ` pqr´1 ´ prqα ´ pr´1 “ 0. First of all we see that α is a quadratic
irrational. Since its continued fraction is purely periodic we must have a0 ě 1 hence
α ą 1. From the quadratic equation we see that αα “ ´pr´1{qr. Using either pr´1{qr “

ppr´1{qr´1qpqr´1{qrq or ppr´1{prqppr{qrq, we conclude that pr´1{qr ă α, hence ´1 ă α ă 0.
So α is reduced.
Suppose conversely that α is reduced quadratic irrational. Let x0 “ α and recursively
xn`1 “ 1{pxn´rxnsq. Since x0 is reduced, all xi are reduced. Moreover their discriminants
are all the same, hence there exist only finitely many distinct xi. So there exist r ă s
such that xr “ xs. Notice that the value of an follows uniquely from xn`1 by the
condition that xn is reduced, namely an “ r´1{xn`1s. Hence xn “ r´1{xn`1s ` 1{xn`1.
In particular, it follows from xr “ xs that xr´1 “ xs´1, etcetera, hence x0 “ xs´r. So the
continued fraction of x0 “ α is purely periodic.
Now, suppose that α has a periodic continued fraction. Then there exists β with a
purely periodic expansion such that α “ ra0, a1, ..., an0 , βs with β a quadratic irrational
so is α. Conversely, if α is a quadratic irrational then there is β reduced quadratic
irrational such that α “ ra0, a1, ..., an0 , βs and then β is purely periodic, it follow easily
that α is periodic. �

For quadratic irrational numbers of the form
?

N, N P N not a square, we obtain
the following theorem.

Theorem 10.2.6. Let N PN and suppose N is not a square. Then
?

N “ ra0, a1, ...., ar, 2a0s

where a0 “ r
?

Ns. Moreover, pa1, a2, ..., arq “ par, ..., a2, a1q.

Proof. First observe that a0 “ r
?

Ns is the result of the first step in the continued
fraction algorithm. Now note that

?
N`a0 is reduced quadratic irrational, since

?
N`

a0 ą 1 and ´1 ă ´
?

N` a0 ă 0. Hence it has purely periodic continued fraction of the
form ?

N ` a0 “ r2a0, a1, a2, ..., ars “ r2a0, a1, ..., ar, 2a0s

as asserted. Notice also that
?

N ` a0 “ r2a0, a1, a2, ..., ar,
?

N ` a0s. Substract 2a0, on
both sides to find

?
N ´ a0 “ r0, a0, ...ar,

?
N ` a0s. Hence,

1
?

N ´ a0
“ ra1, a2, ..., ar,

?
N ` a0s

Application of the last lemma of last section yield

´
1

?
N ` a0

“ rar, ..., a2, a1, a0 ´
?

Ns

This algebraic identity remains true if we replace
?

N by ´
?

N (conjugate),

´
1

´
?

N ` a0
“ ra0, ..., a2, a1, a0 `

?
Ns

. Invert both sider and add 2a0 to obtain
?

N ` a0 “ r2a0, ar, ..., a2, a1,
?

N ` a0s

So, we see that the continued fraction of
?

N` a0 is also given by r2a0, ar, ..., a2, a1s. �
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10.3 Pell’s equation

Suppose N PN is not a square and consider the diophantine equation

x2
´Ny2

“ 1

in the unknowns x, y PN. Although problems related to this equation have been around
since antiquity, the first general method for solving it was given by W. Brouncker in
1657. He was able to use his method to obtain the smallest solution

px, yq “ p32188120829134849, 1819380158564160q

to x2 ´ 313y2 “ 1!. Very soon Pell’s name stuck to this equation. For several values of
N we list the solution with minimal x,

32 ´ 2ˆ 22 “ 1
6492 ´ 13ˆ 1802 “ 1

17663190492 ´ 61ˆ 2261539802 “ 1

Looking at these equations one observes that it is quite a miracle that any non-trivial
solution for x2 ´ 61y2 “ 1. Nevertheless, using continued fractions, it is possible to
show that there always exists a non-trivial solution.

Proposition 10.3.1. Let N P N and suppose N is not a square. Then there exist
x ‰ 1, y ‰ 0 PN such that x2 ´Ny2 “ 1.

Proof. For N “ 2, 3, 5, 6 our theorem is true since we have 32´2ˆ22 “ 1, 22´3ˆ12 “ 1,
92 ´ 5ˆ 42 “ 1, 52 ´ 6ˆ 22 “ 1. So, we can assume that N ě 7.
Consider the continued fraction expansion of

?
N given by

?
N “ ra0, a1, ...., ar, 2a0s

say. Let p{q “ ra0, ...., ars. Then, from our elementary estimates we find that

|
p
q
´
?

N| ă
1

2a0q2

Multiply on both side by |p{q`
?

N| ď p2
?

N ` 1q. We find,

|
p2

q2 ´N| ă
2
?

N ` 1
2a0q2

Multiply on both sides by q2 to find |p2 ´Nq2| ă p2
?

N ` 1q{2r
?

Ns. When N ě 7 we
have

2
?

N ` 1
2r
?
´Ns

ă
2
?

N ` 1
2p
?

N ´ 1q
ă 2

Hence, |p2 ´ Nq2| ă 2. So, we have either p2 ´ nq2 “ ´1 or p2 ´ Nq2 “ 1. (why can’t
we have p2 ´Nq2 “ 0?). In case p2 ´Nq2 “ 1 we find x “ p, y “ q as solution. In case
p2´Nq2 “ ´1 we notice that pp2`Nq2q2´Np2pqq2 “ pp2´Nq2q2 “ 1. Hence we have
the solution x “ p2 `Nq2, y “ 2pq. �
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Now that we established the existence of non-trivial solutions to Pell’s equation
we would like to have the full set. An important remark to this end is the following
trick which we illustrate by an example. Notice that 32 ´ 2 ˆ 22 “ 1 is equivalent to
p3` 2

?
2qp3´ 2

?
2q “ 1. Take the square on both sides and use the fact that

p3˘ 2
?

2q2 “ 17˘ 12
?

2

Hence p17 ` 12
?

2qp17 ´ 12
?

2q which implies 172 ´ 2 ˆ 122 “ 1. We can also take
the cube of p3 ` 2

?
2q to obtain 99 ` 70

?
2q. We then find 992 ´ 2 ˆ 702 “ 1. So,

given one solution of Pell’s equation we can construct infinitely many! If we start with
the smallest positive solution we get all solutions in this way, as shown in the following
theorem.

Theorem 10.3.2. Choose the solution of Pell’s equation with x` y
?

N ą 1 and mini-
mal. Call it pp, qq. Then, to any solution x, y PN of Pell’s equation there exists n PN
such that x` y

?
N “ pp` q

?
Nqn.

Proof. Notice that if u, v P Z satisfy u2 ´Nv2 “ 1 and u` v
?

N ě 1, then u´ v
?

N,
being equal to pu`v

?
Nq´1 lies between 0 and 1. Addition of the inequalities u`v

?
N ě

1 and 0 ăď u´v
?

N ď 1 implies u ě 0. Substraction of these inequalities yields v ą 0.
We call u`v

?
N the size of the solution u, v. Now, let x, y PN be any solution of Pell’s

equation. Notice that px ` y
?

Nqpp ´ q
?

Nq “ ppx ´ qyNq ` ppy ´ qxq
?

N. Let u “
px´qyN, v “ py´qx and we have u2´Nv2 “ 1 and u`v

?
N “ px`y

?
Nq{pp`q

?
Nq.

Observe that

1 ď
x` y

?
N

p` q
?

N
ă

x` y
?

N
2

hence 1 ď u`v
?

N ă
x`y

?
N

2 . So we have found a new solution with positive coordinates

and size bounded by half the size of x` y
?

N. By repeatedly performing this operation

we obtain a solution whose size is less than the size of p` q
?

N. By the minimality of
p, q this implies that this last solution should be 1, 0. Supposing the number of steps

is n we thus find that x` y
?

N “ pp` q
?

Nqn. �

In the existence proof for solution to Pell’s equation we have used the continued
fraction of

?
N. It turns out that we can use this algorithm to find the smallest solution

and also all solutions of other equations of the form x2 ´Ny2 “ k for small k.

Theorem 10.3.3. Suppose we have x, y P N such that |x2 ´ Ny2| ď
?

N. Then x{y
is a convergent to the continued fraction of

?
N.

Proof. Let M “ r
?

Ns. Since x2 ´ Ny2 is integral the inequality |x2 ´ Ny2| ă
?

N
implies |x2 ´ Ny2| ď M. We first show that x ě My. if x ă My we would have the
following sequence of inequalities,

x2
´Ny2

ă x2
´M2y2

“ px´ yMqpx` yMq ă ´M

contradicting |x2 ´Ny2| ď M implies

|x´ y
?

N| ď
M

x` y
?

N
ă

M
x` yM

ď
M

2yM
“

1
2y
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Divide by y on both sides and use a Legendre theorem to conclude that x{y is a
convergent. �
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Chapter 11

Gaussian integers

11.1 Basic properties

Definition 11.1.1. 1. Let Zris “ ta ` bi|a, b P Zu, where i2 “ ´1, Zris is a ring
called the ring of Gaussian integers.

2. We can define a map called the norm:

N : Zris Ñ Z
a` bi ÞÑ pa` biqpa´ biq “ a2 ` b2

This permits to pass from Zris to Z. The norm is multiplicative (Exercise!).

We can define the notion of divisibility as we were able to define in Z

Definition 11.1.2. Let α, β P Zris. We say α divides β or β|α, if α “ βγ for some
γ P Zris. We call units of Zris the invertible elements of Zris (that is the α P Zris
such that there is γ P Zris, αγ “ 1). They are precisely the elements of norm 1, that is
˘1, ˘i. A Gaussian prime element is an element α P Zris which is not a unit such
that if α “ β ˆ γ where β and γ P Zris then β or γ is a unit. In other word, its only
divisor are up to units α and 1. Suppose that δ|α and δ|β. We say δ is a common
divisor of α and β. We say that δ is a greatest common divisor (gcd) of α
and β if it is a common divisor of α and β with maximum possible norm.

Example 11.1.3. 2 is not a Gaussian prime, since 2 “ p1` iqp1´ iq.

We can relate divisibility in Zris with divisibility in Z via the norm map.

Lemma 11.1.4. If β|α in Zris then Npβq|Npαq in Z.

Here, a easy characterization of Gaussian prime:

Lemma 11.1.5. Let α P Zris, α is a Gaussian prime if and only if β|α implies Npβq “ 1
or Npβq “ Npαq.

Corollary 11.1.6. Let α P Zris, α. If Npαq is prime then α is a Gaussian prime.

As for integers we have the existence of the prime factorization and the proof is
similar to the one for the integers.

105
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Proposition 11.1.7. Let α P Zris be a non-zero, non-unit. Then α factors into a finite
product of Gaussian primes.

Proposition 11.1.8. Let p P N be prime. Then p is also prime in Zris if and only if
p is not the sum of two squares.

Corollary 11.1.9. Suppose p P N is prime and p “ a2 ` b2. Then α “ a ` ib and
ᾱ “ a´ ib are prime in Zris.

Proof. We have just seen that Npαq “ Npᾱq “ p i.e. their norm is prime. Then α and
ᾱ are Gaussian primes. �

The proof of the following three following result is left as exercises.

Proposition 11.1.10. If α, β P Zris are non-zero, then there is a quotient µ P Zris
and remainder ρ P Zris such that α “ µβ` ρ where Npρq ă Npβq.

Proof. We have α, β P Zris with β ‰ 0 we want to construct γ, ρ P Zris such that
α “ βγ` ρ where Npρq ď p1{2qNpβq. Write

α
β
“
αβ̄

ββ̄
“

αβ̄

Npβq
“

m` ni
Npβq

where we set αβ̄ “ m` ni. Divide m and n by Npβq using a modified division theorem
in Z,

m “ Npβqq1 ` r1, n “ Npβqq2 ` r2

where q1 and q2 are in Z and 0 ď |r1|, |r2| ď p1{2qNpβq. Then,

α
β
“

Npβqq1 ` r1 ` pNpβqq2 ` r2qi
Npβq

“ q1 ` q2i`
r1 ` r2i
Npβq

Set γ “ q1 ` q2i (this will be the desired quotient) , so after a little algebra the above
equation becomes

α´ βγ “
r1 ` r2i
β̄

We will show Npα ´ βγq ď p1{2qNpβq, so using ρ “ α ´ βγ will settle the division
theorem. Take norms of both sides of the previous equation and use that Npβq “ Npβ̄q,
to get

Npα´ βγq “
r2

1 ` r2
2

Npβq

Feeding the estimates 0 ď |r1|, |r2| ď p1{2qNpβq into the right side,

Npα´ βγq ď
p1{4qNpβq2 ` p1{4qNpβq2

Npβq
“

1
2

Npβq

�

Lemma 11.1.11. Suppose α “ µβ` ρ where Npρq ă Npβq. Then ρ “ 0 iff β|α.
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Lemma 11.1.12. Suppose α “ µβ ` ρ wher Npρq ă Npβq. If ρ “ 0, β is a gcd for α
and β. If not, a gcd for α and ρ is also a gcd for α and β (and vice versa).

We get as for the integer the Euclidean algorithm for Zris
1. Suppose Npαq ě Npβq. Let gcdpα1, β1q “ gcdpα, βq. Set i “ 1.

2. Write αi “ µiβi ` ρi where Npρiq ă Npβiq. If ρi is a gcd for α and β. If not,
continue.

3. Let αi`1 “ βi, βi`1 “ ρi. Note that Npαi`1q ą Npβi`1q from step 2. Increase i by
1 and repeat Step 2 (i.e., repeat Step 2 for αi`1 and βi`1).

We can run the Euclidean algorithm in reverse to get that some gcd of α and β must
of the form µα` νβ for some µ, ν P Zris.

Proposition 11.1.13. Let π be a prime in Zris. If π|αβ then π|α or π|β.

Theorem 11.1.14. (Unique factorisation) Let α ‰ 0 be a non-unit in Zris. Suppose
α “ π1...πm and α “ π11...π

1
n are two factorizations of α into Gaussian prime πi and π1j.

Then m “ n, and up to a reordering of π1j ’s, we have

πi “ uiπ
1
i

for each i, where ui is a unit in Zris.

Proposition 11.1.15. The Gaussian primes, up to units, are precisely the following:

1. prime p PN not of the form x2 ` y2,

2. α “ a` bi where Npαq is prime in N.

11.2 Fermat’s two square theorem

Theorem 11.2.1. Let p be a prime. Then p is a sum of two square if and only if
p ” 1 mod 4 or p “ 2.

Proof. Suppose p “ x2 ` y2 for some x, y P Z. Since square are either 0 or 1 mod 4, p
being odd can only be 1 mod 4.
Now suppose that p ” 1 mod 4. Then the congruence equation x2 ” ´1 mod p has
a solution, say x0. Let us now work in Zris and use unique factorization. We have
p|px2

0`1q hence p|px0` iqpx0´ iq. If p were irreducible in Zris, we will have p|px` iq and
p|px´ iq. Hence p|2i which is impossible. Hence p “ αβ in Zris with Nα, Nβ ą 1. Take
norms on both sides, p2 “ NpαqNpβq. Since Npαq, Npβq ą 1, this implies p “ Npαq,
hence p can be written as a sum of two square. �

Corollary 11.2.2. Let p be a prime which is not 3 mod 4. Then p “ x2`y2 has exactly
1 solution for x, y PN with x ě y.

Proof. There is a solution x2`y2 “ p by the theorem. We know that p “ px`yiqpx´ iyq
is a factorization into primes in Zris. (Exercise!) If we also have p “ x12 ` y12 then
p “ px1` iy1qpx1´ y1iq is also a prime factorization in Zris. But since prime factorization
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is unique, we have x1 ` y1i “ upx` yiq or upx´ yiq for some unit u.
Suppose the former. If u “ ˘1 then x1 “ ˘x and y1 “ ˘y. If u “ ˘i then u “ ˘i then
x1 “ ˘y and y1 “ ˘x. Hence x1 and y1 are up to sign, x and y in some order. The case
x1` y1i “ upx´ yiq is similar. So there is only solution to p “ x2` y2 with x, y ą 0, up
to interchanging x and y. �

Corollary 11.2.3. The prime of Zris are precisely units times

1. p where p “ 4n` 3 is a prime in N,

2. α “ a` bi where Npαq is either 2 or prime of N congruent to 1 mod 4.

Theorem 11.2.4. A natural number n is a sum of two squares if and only if any prime
p|n such that p ” 3 mod 4 occurs to an even power in the prime factorization of n.

Proof. Clearly n “ x2 ` y2 if and only if n “ Npαq where α “ x` yi, i.e. n is a sum of
two squares if and only if it is the norm of some element of Zris.
Let

n “
ź

pei
i

ź

q f j

j

be the prime factorization of n in N where each pi ” 3 mod 4 and q j ı 3 mod 4. Each
q j “ π jπ̄ j where π j is some Gaussian prime. Thus

n “
ź

pei
i

ź

π
f j

j π̄ j
f j

is the prime factorization of n in Zris, where each pi is of type (1.) and each π j, π̄ j is
of type p2.q, in the notation of the above corollary.
pñq Suppose n “ x2 ` y2, i.e. n “ Npαq for some α P Zris. Let

α “
ź

rhi
i

ź

φ
k j

j

be the prime factorization of α in Zris, again where each ri is of type p1.q and φ j is of
type p2.q. Then,

ᾱ “
ź

r̄i
hi
ź

φ̄ j
k j
“
ź

rhi
i

ź

φ̄ j
k j

is the prime factorization of ᾱ since each ri PN. But then,

αᾱ “
ź

ri
2hi

ź

φ j
k jφ̄ j

k j
“ n “

ź

pei
i

ź

π
f j

j π̄ j
f j

Hence up to reordering the primes (assuming all were distinct), we have ei “ 2hi is
eaten, which is what we wanted to prove.

ð Suppose now that ei “ 2ki where ki is an integer. Each p2ki
i and q f j

j are norm of an

element in Zris. Then n “ x2 ` y2 for some x, y P Z. �

We admit the following theorem:

Theorem 11.2.5. Let r2pnq denote the number of solutions to x2 ` y2 “ n. Write
n “ 2 f n1n2 where n1 is a product of primes ” 1 mod 4 and n2 is a product of primes
” 3 mod 4. Then r2pnq “ 0 if n2 is not a perfect square, and r2pnq is 4 times the number
of divisors of n1 otherwise.
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11.3 Pythagorean triples

Definition 11.3.1. Let α, β P Zris. If the only common divisors of α and β are units,
we say α and β are relatively prime.

One of the ancient diophantine equations is the following.

Definition 11.3.2. A triplet a, b, c PN is called Pythagorean triple if

a2
` b2

“ c2

Moreover, if a, b are coprime (thus a, b and c are coprime) then we say that it is a
primitive Pythagorean triple.

Since if px, y, zq is a Pythagorean triple, then pλx, λy, λzq is also a Pythagorean triple.
It is also clear that all Pythagorean triples are multiples of the primitive ones. Hence
to determine all Pythagorean triples it suffices to determine the primitive ones, which
we now see how to do using Zris.

Remark 11.3.3. Notice that in a Pythagorean triplet a and b cannot be both odd. For
then we would have a2`b2 ” 1`1 ” 2 mod 4 but c2, being a square, cannot be ” 2 mod 4.

Lemma 11.3.4. Suppose px, y, zq is a primitive Pythagorean triple. Then x ` yi and
x´ yi are relatively prime in Zris i.e. they have no common prime divisors in Zris.

Proof. Suppose instead x` iy and x´ iy have a common prime divisor π P Zris. Then π
divides their sum 2x and their difference 2yi. Since x and y have no common fractures
in Z, they have no common prime factors in Zris. Thus must be a prime dividing 2,
i.e., π “ ˘1`˘i. Then

Npπq “ ππ̄ “ 2|px` yiqpx´ yiq “ x2
` y2

“ z2

This means z is even, so x2 ` y2 ” 0 mod 4 which implies x and y are both even, a
contradiction. �

Lemma 11.3.5. Suppose α, β P Zris are relatively prime. If αβ “ γ2 is a square in
Zris, then uα and u´1β are squares for some unit u of Zris.

Proof. Note that this is trivial if γ is a unit (and vacuous if γ “ 0). So assume αβ
is the square of some γ P Zris, where γ is a non-zero non-unit. Then γ has a prime
factorization in Zris:

γ “
ź

πei
i

Thus the prime factorization of

αβ “
ź

π2ei
i

up to a reordering of primes, we have

α “ u´1π2e1
1 ...π

2e j

j

β “ uπ2e j`1
i`2 ...π2ek

k

for some unit u. �
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Proposition 11.3.6. px, y, zq is a primitive Pythagorean triple if and only if x and y
are (in some order) u2 ´ v2 and 2uv for u, v relatively prime in N with u ą v and u,
v not both odd. In this case, z “ u2 ` v2.

Proof. (ð) Suppose we have u and v with the given properties. Clearly a, b and c
satisfied a2 ` b2 “ c2 and gcdpa, cq divides gcdpc ´ a, c ` aq “ gcrp2u2, 2v2q “ 2. But
since u ı v mod 2, a and c are odd and so gcdpa, cq “ 1. Hence, gcdpa, b, cq “ 1.
(ñ) Suppose px, y, zq is a primitive Pythagorean triple, so x2`y2 “ px`iyqpx´yiq “ z2.
By the first lemma, x` iy and x´ iy are relatively prime, and by the second they are
units times squares. In particular x ` iy “ ˘α2 or x ` yi “ ˘iα2 for α P Zris. Since
´1 is a square in Zris, we may absorb the possible minus sign into α and write either
x` yi “ α2 or x` iy “ iα2.
Write α “ u` iv, and we get in the first case

x` iy “ pu` viq2 “ u2
` v2

` 2uvi

and
x` yi “ ipu` viq2 “ ´2uv` pu2

` v2
qi

In the first case, we have x “ u2 ` v2 , y “ 2uv. In the second, we may replace u by
´u or v by ´v to write x “ 2uv, y “ u2 ` v2 and to obtain u and v in N. Then the
conditions gcdpu, vq “ 1, u ą v and u, v not both odd all follow from the facts that
gcdpx, yq “ 1 and x, y ą 0.
The last statement is obvious. �

Remark 11.3.7. When we rewrite the equation a2`b2 “ c2 as pa{cq2`pb{cq2 “ 1 we see
that finding Pythagorean triplets is equivalent to finding rational numbers p, q such that
p2 ` q2 “ 1, in other words, finding rational points on the unit circle. Geometrically,
the solution to this problem runs as follows. For any point pp, qq P Q2 we draw the line
between pp, qq and p1, 0q which is given by Y “ tp1´Xq, where t “ q{p1´pq. Conversely,
any line through p1, 0q is given by Y “ tp1´ Xq. THe second point of intersection with

the unit circle is given by t2´1
t2`1 , 2t

t2`1 . Thus, we can conclude: there exists a bijection
between the sets

tt P Qu and tx, y P Q|x2
` y2

“ 1, px, yq ‰ p1, 0qu

given by

t “
y

1´ x
, px, yq “

` t2 ´ 1
t2 ` 1

,
2t

t2 ` 1
˘

Corollary 11.3.8. Let p P N be prime. Then p occurs as the hypotenuse of a right-
angle triangle with integer length sides if and only if p ą 2 is a sum of two squares, i.e.
if and only if p ” 1 mod 4.

Proof. The second equivalence is Fermat’s two square theorem, so it suffices to prove
the first.
(ñ) Suppose p is such a hypotenuse. Clearly p ‰ 2. Now x2 ` y2 “ p2. This implies
gcdpx, yq “ 1. Hence by the previous proposition p “ u2 ` v2 for some u, v.
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(ð) Suppose p “ u2 ` v2 is odd. Then u ‰ v, gcdpu, vq “ 1 and u and v are not
both odd. Futhermore, we may assume u ą v. By the proposition pu2 ´ v2, 2uv, pq is a
primitive Pythagorean triple. �

It is very simple to find all α, β, γ P Q such that α2 ` β2 “ γ2. They are all of the
form

`u2 ´ v2

M
˘2
`
`2uv

M
˘2
“
`u2 ` v2

M
˘2
, u, v P Z

Definition 11.3.9. A number n PN is called congruent if n is the surface area of a
right-angled triangle with rational sides. In other words

n is congruent ô there are u, v, M P Z such that n “
1
2

2uv
M

u2 ´ v2

M

The latter equation is equivalent to M2n “ uvpu2 ´ v2q. It is a classical problem
to characterize congruent numbers. The smallest congruent number is 5. A notorious
congruent number is n “ 157. As an interesting curiosity we mention two results on
congruent numbers.

Theorem 11.3.10. (Birch, 1975) When n is prime and equal 5 or 7 modulo 8 then n
is congruent. When n is twice a prime of the form ´1 mod 4, then n is also congruent.

Theorem 11.3.11. (Tunnell, 1983) Suppose n is a congruent number then the number
of integral solutions to 2x2 ` y2 ` 8z2 “ n equals twice the number of solutions to
2x2 ` y2 ` 32z2 “ n.

It is generally expected that the converse of Tunnell’s theorem also holds.

11.4 Primes of the form 4n` 1

I mentioned earlier that precisely half of the primes in Z remain prime in Zris, and
half factor in Zris. We saw that the primes in the first groups are the primes which are
3 mod 4 and the primes in the second group are 2 and those 1 mod 4. My claim then
is that, in a sense which can be made precise, half of the (odd) primes in N are 1 mod
4 and half are 3 mod 4. We will prove first that there are infinitely many primes of the
form 4n` 3.

Proposition 11.4.1. There are infinitely many primes of the form 4n` 1.

Proof. We have seen that an odd prime p is of the form 4n ` 1 if and only if p|x2 ` 1
for some x P Z. Hence it suffices to show that there are infinitely many primes dividing
the values of the polynomial f pxq “ x2 ` 1. Suppose instead only finitely many primes
p1, ..., pk (including 2) divide the values of f pxq. Let

gpyq “ f pp1...pkyq “ pp1...pkq
2y2
` 1

The values of gpyq are a subset of the values of f pxq so the only primes which divide
values of gpyq are p1,...,pk. However,

gpyq ” 1 mod pi
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for i “ 1, 2, ..., k. Hence, gp1q “ pp1...pkq
2 ` 1 ą 1 is not divisible by any prime, a

contradiction. �

The above result is a special case of the following.

Theorem 11.4.2. (Dirichlet’s theorem on arithmetic progressions) Suppose gcdpa,nq “
1. There are infinitely many prime p ” a mod n.

The proof was surprisingly novel, using an analytic tool that Dirichlet invented called
L-functions, which form a central topic in modern number theory. Now that we know
there are infinitely many primes which are 1 mod 4 and 3 mod 4, you might wonder
whether there’s something further about my assertion that half of the (odd) primes are
1 mod 4 and half 3 mod 4. The answer is yes, Dirichlet proved something even more
precise than the above theorem.

Theorem 11.4.3. (Dirichlet) The odd primes, with the natural ordering, are equally
distributed in two congruence classes 4Z` 1 and 4Z` 3, i.e.,

limnÑ8
7tp ă n : p ” 1 mod 4 primeu
7tp ă n : p ” 3 mod 4 primeu

“ 1

Dirichlet in fact proved that mod any n, the primes (not dividing n-, are equally
distributed (in the above sense) among the φpnq congruence classes nZ ` a where
gcdpa,nq “ 1.
Nevertheless, Chebyshev noticed an interesting phenomenon, more amazing in light of
equal distribution result of Dirichlet: there appear to be more primes of the latter form.
Precisely, if we actually count the primes in each class less than n, ”most of the time”
we have:

7tp ă n : p ” 1 mod 4 primeu ą 7tp ă n : p ” 3 mod 4 primeu

For example, the first time the right hand side is greater is for n “ 26861. One might
wonder if Chebyshev’s observation just happens to be true for small values of n. In fact
for infinitely many n the left hand side is greater, and infinitely many n the right hand
side is greater. Nevertheless, Chebyshev was right. In 1994, Rubinstein and Sarnak
showed in an appropriate way of quantifying things, the above inequality holds about
99, 50% of the time. Very roughly, one reason why there are more primes in 4Z` 3 is
because 4Z` 1 must contain all the odd squares, leaving less room for primes.



Chapter 12

Other diophantine equation

Let Fpx1, ...., xrq P Zrx1, ..., xrs. An equation of the form

Fpx1, ..., xrq “ 0

in the unknowns x1, ..., xr P Z or Q is called diophantine equation

12.1 Fermat’s equation

After reading about pythagorean triples it seems natural to ask the following ques-
tion. Let n PN and n ą 2. Does the equation

xn
` yn

“ zn

have any solutions in x, y, z P N? Fermat believed the answer to be ’no’ and claims to
have a ’remarkable proof’. unfortunately the margin of the book in which he made this
claim was too narrow to write this proof down’. In June 1993 the English mathematician
Andrew Wiles came quite close and for some time it was believed that he did have a
proof. However, his 200 page manuscript of highly advanced mathematics turned out
to have a gap and it took about a year of suspense before this gap was repaired with the
help of R. Taylor, a former student of wiles. This happened in October 1994. Wiles’s
work not only resolves Fermat’s last problem, it is also a major advance in the theory
of elliptic curves, in particular the Shimura-Taniyama-Weil conjecture.
Before Wiles’s discovery the equation had been solver for certain special values of n.
For example, Fermat did prove the following theorem.

Theorem 12.1.1. The equation x4 ` y4 “ z2 has no non-trivial solution x, y, z PN.

As a consequence we see that the equation xn` yn “ zn has no solutions, with n “ 4.

Proof. Suppose there exists a solution. Let x0, y0, z0 be a solution with minimal z0.
We may assume that gcdpx0, y0q “ 1 and that y0 is even. We shall repeatedly use the
characterization of the Pythagorean triple. From x4

0`y4
0 “ z2

0 follows, there are r, s P Z:

gcdpr, sq “ 1, x2
0 “ r2

´ s2, y2
0 “ 2rs, z0 “ r2

` s2

113
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From x2
0 ` s2 “ r2, x0 odd and gcdpr, sq “ 1 follows, there are ρ, σ P Z:

gcdpρ, σq “ 1, x0 “ ρ
2
´ σ2, s “ 2ρσ, r “ ρ2

` σ2

Together with y2
0 “ 2rs this yields py0{2q2 “ ρσpρ2 ` σ2q. Since the factor ρ, σ, ρ2 ` σ2

are pairwise relatively prime and their product is a square, we get that there exist u,
v, w P Z,

ρ “ u2, σ “ v2, ρ2
` σ2

“ w2

After elimination of ρ, σ we get w2 “ u4` v4. A simple check shows |w| “
a

ρ2 ` σ2 “?
r ă y0 ă z0, contradicting the minimality of z0. Hence there can be no non-trivial

solutions. �

The principle to construct a smaller solution out of a given (hypothetical) solution
is known as Fermat’s descending induction or descent. This principle, in disguised form
with cohomology groups and all, is still often used for many diophantine equations.
The case n “ 3 was settled by Euler (1753), Dirichlet dealt with the case n “ 5 in 1839.
Notice that the case n “ 6 follows from n “ 3 because x6 ` y6 “ z6 can be rewritten as
px2q3 ` py2q3. In general, since any number larger than 2 is divisible either by 4 or by
an odd prime, it suffices to prove Fermat’s conjecture for n “ 4, which we have already
done, and for n prime. The methods of solution all follow the same pattern. Let p be
an odd prime and put ζ “ e2πi{p. Then xp ` yp “ zp can be rewritten as

px` yqpx` ζyq...px` ζp´1yq “ zp

The left hand side of the equation has been factored into linear factors at the price
of introducing number from Zrζs. The right hand side of the equation is p-th power
and the principle of the proof is now to show that the linear factor on the left are
essentially p-th powers in Zrζs. To reach such a conclusion we would need the property
that the factorization into irreducible elements is unique in Zrζs. Assuming this one
would be able to conclude a proof of Fermat’s conjecture, although it is still not easy.
Unfortunately there is one more complicating factor, prime factorization in Zrζs need
not to be unique. Finding a way around this problem has been one of the major
stimuli to the development of algebraic number theory. In 1847, E.Kummer proved the
following remarkable theorem.

Theorem 12.1.2. (Kummer) Denote by B0, B1, B2, ... the sequence of Bernouilli
numbers. If the odd prime number p does not divide the numerators of B2, B4, B6, ... ,
Bp´3 then xp ` yp “ zp has no solution in positive integers.

Recall that the Bernouilli numbers B0, B1, B2, ... are given by the Taylor series

x
ex ´ 1

“

8
ÿ

n“0

Bn

n!
xn
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It is not hard to see that Bn “ 0 when n is odd and larger than 1. A small list of values,

B2 “ 1{6
B4 “ ´1{30
B6 “ 1{42
B8 “ ´1{30

B10 “ 5{66
B12 “ ´691{2730
B14 “ 7{6
B16 “ ´3617{510
B18 “ 43867{798
B20 “ ´174611{330

As an amusing aside we mention that the numerator of Bk with k ď p ´ 3, k even
is divisible by p if and only if 1k ` 2k ` ... ` pp ´ 1qk is divisible by p2. Using the
computer and further refinements of Kummer’s theorem one had been able to verify
Fermat’s conjecture for 2 ă n ă 4 ˆ 106, (Buhler, Crandall, Sompolski) around 1990.
For some details about the history and proof of Kummer’s theory we refer to the books
of P.Ribenboim (13 lectures on Fermat’s last theorem, Springler Verlag 1977). Of
course, these books were pre-Wiles. For an introduction for a general audience to the
technical to the techniques entering Wiles’s proof I highly recommend Simon Singh’s
book Fermat’s Enigma: The epic quest to solve the world’s greatest mathematical
problem (1998). It reads like a novel.
As a generalization of Fermat’s conjecture Euler conjectured that for any k P N there
are no positive integers x1, x2, ... , xk. such that xk

1 ` .... ` xk
k´1 “ xk

k. However,

this was disproved by a counterexample of Lander and Parkin (1967) reading 1445 “

275 ` 845 ` 1105 ` 1335. Only in 2004 a second example was discovered by J.Frye:

555
` 31835

` 289695
` 852825

“ 853595

In 1998, N.Elkies found spectacular counter examples in the case k “ 4, the smallest
of which reads 958004 ` 2175194 “ 4224814. He also showed that there exist infinitely
many of such examples with k “ 4.

12.2 Mordell’s equation

Let k P Z The equation
y2
“ x3

´ k

in x, y P Z is known as Mordell’s equation. This equation has been the subject of many
investigation by many people. In fact, a whole book has been written about is (London,
Finkelnstein: Mordell’s equation x3 ´ y2 “ k). The main theorem is.

Theorem 12.2.1. (Mordell) The equation has finitely many solution.

The proof uses algebraic number theory and is beyond the scope of these notes.
Although Mordell’s theorem is a finiteness theorem, one cannot deduce an algorithm
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from it to actually determine the solutions of any given equation. Bounds, which in
principle give an effective solution became available around 1968 by A. Baker who
showed that log|x| ď c|k|104

and lightly improved by H. Stark log|x| ď Cε|k|1`ε for every
ε ą 0. the constants c, cε can be computed explicitly. It turns out the solution set
depends in a very erratic way on the value of k. For example a short computer search
reveals the solutions:

32 “ p´2q2 ` 17
42 “ p´1q3 ` 17
52 “ 23 ` 17
92 “ 43 ` 17

232 “ 83 ` 17
2822 “ 432 ` 17
3752 “ 523 ` 17

3786612 “ 52343 ` 17

It is highly non-trivial task to show that this is the complete solution set of y2 “ x3`17.
Two examples which are easier to deal with are given in the following theorem.

Theorem 12.2.2. The equation y2 “ x3 ` 7 has no solutions in x, y P Z. The only
integral solutions to the equation y2 “ x3 ´ 2 are px, yq “ p3,˘5q

Proof. First we deal with y2 “ x3` 7. Note that x is odd because x even would implies
that y2 ” 7 mod 8, which is impossible. Now notice that

y2
` 1 “ x3

` 8 “ px` 2qpx2
´ 2x` 4q

Notice also that for any x, x2 ´ 2x ` 4 “ px ´ 1q2 ` 3 ” 3 mod 4. Hence x2 ´ 2x ` 4
always contains a prime divisor p which is 3 mod 4. So we get y2 ` 1 ” 0 mod p which
is impossible because of p ” 3 mod 4.
To deal with y2 “ x3 ´ 2 we use arithmetic in the euclidean ring R “ Zr

?
´2s. Notice

first of all that x is odd. If x were even, then x3´2 cannot be a square. From y2`2 “ x3

follows the factorization
py`

?
´2qpy´

?
´2q “ x3

The gcd of y`
?
´2 and y´ 2

?
´2 divides their difference which is 2

?
´2. So gcd is

either 1 or divisible by
?
´2. Since y is odd the first possibility holds. Thus we find

that there exist a, b P Z such that y `
?
´2 “ pa ` b

?
´2q3. Computing the cube,

y `
?
´2 “ a3 ´ 6ab2 ` bp3a2 ´ 2b2q

?
´2. Comparison of the coefficients of

?
´2 on

both sides yields 1 “ bp3a2 ´ 2b2q. Hence x “ a2 ` 2b2 “ 3. The values of y follow. �

An interesting difference between the equation y2 “ x3`7 and y2 “ x3´2 is that the
second equation has infinitely many rational solutions. This can be seen by so-called
chord and tangent method. In the point p3, 5q of the algebraic curve y2 “ x3 ´ 2 we
draw the tangent to the curve. It is given by y´ 2 “ p27{10qpx´ 3q. Now intersect this
line with the curve y2 “ x3 ´ 2. Elimination of y yields

x3
´

729
100

x2
`

837
50

x´
1161
100

“ 0
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Because of our tangent construction we already know that this equation has a double
root in x “ 3. So the third root must also be a rational number. And indeed we find

px´ 3q2px´
129
100

q “ 0

So the x coordinate of the third intersection point of the tangent with the curve equals
129{100. The corresponding y coordinate is 383{1000. Indeed we check that

px, yq “ p129{100, 383{1000q

is a rational solution of y2 “ x3 ´ 2. Repetition of this procedure provides us with
an infinite set of rational solutions. In fact, it turns out that the rational points on
y2 “ x3 ´ 2 together with the point ’at infinity’ have a group structure known as the
Modell-Weil group. This is the beginning of a fascinating subject of a rational points
on elliptic curves. Excellent introduction can be found in Silverman and Tate. Rational
points on elliptic curves.
By checking result for a large number of k M. Hall made the followingg conjecture.

Conjecture 12.2.3. (Hall) There exists a constant C ą 0 such that |x3 ´ y2| ą Cx1{2

for any x, y PN with x3 ´ y2 ‰ 0.

It is also known that there exist infinitely many positive integers x, y such that

0 ă |x3
´ y2

| ă
?

x1{2

(Danilov, 1982) so in this sense Hall’s conjecture is sharpest possible.

12.3 The ’abc’-conjecture

In 1996, Masser and Oesterlè formulated a striking conjecture, the truth of which
has far reachingg consequences for diophantine equations. For any a P Z we let Npaq
(the conductor or radical of a) denote the product of all distinct primes of a.

Conjecture 12.3.1. (’abc’ conjecture) Let ε ą 0. Then there exists cpεq ą 0 such that
for any triple of non-zero numbers a, b, c P Z satisfying a`b`c “ 0 and gcdpa, b, cq “ 1,
we have

maxp|a|, |b|, |c|q ă cpεqNpabcq1`ε

To get a feeling for what this conjecture says it is best to consider a number of
consequences.

ConsÈquences 12.3.2. Let p, q, r be fixed number s larger than 1 and pp, q, rq “ 1.
Then,

px
` qy

“ rz

has only finitely many solutions x, y, z PN.
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Proof. (ADMITTING THE CONJECTURE) Application of the conjecture shows that

rz
ă cpεqNppxqyrz

q
1`ε
ď cpεqNppqrq1`ε

Hence rz is a bounded number and so px, qy. In particular x, y, z are bounded. By other
methods it is indeed possible to show that px`qy “ rz has infinitely many solutions. �

ConsÈquences 12.3.3. Fermat’s conjecture is true for sufficiently large n.

Proof. Apply the ’abc’ conjecture to xn ` yn “ zn with x, y, z PN to obtain

zn
ă cpεqNpxnynzn

q
1`ε
ď cpεqNpxyzq1`ε ď cpεq3p1`εq

Hence, assuming z ě 2,
2n´3p1`εq

ď zn´3p1`εq
ď cpεq

and this implies n ď logpcpεqq{log2` 3p1` εq. �

ConsÈquences 12.3.4. Let p, q, r PN. Suppose

xp
` yq

“ zr

has infinitely many solution x, y, z PN with gcdpx, y, zq “ 1. Then

1
p
`

1
q
`

1
r
ě 1

Application of the ’abc’ conjecture yields

zr
ď cpεqNpxpyqzr

q
1`ε
ď cpεqpxyzq1`ε ď cpεqpzr{pzr{qzq1`ε

Taking z Ñ 8 this implies r ď p1`r{p`r{qqp1`εq for any ε ą 0. Hence r ď 1`r{p`r{q
and our assertion follows.

Considering the potential consequences of the ’abc’ conjecture it is likely to be very
difficult to prove. In fact, any weaker version with 1 ` ε replaced by another number
would already be spectacular! The best that can be done by present day methods
(1994) is

maxp|a|, |b|, |c|q ă γexppNpabcq15
q

where γ is some (large) constant.

12.4 Mordell’s conjecture

After seeing a good many particular examples one might wonder whether anything
is known about diophantine equations in general. For a long time only one result in
such a direction was known.

Theorem 12.4.1. (C. L. Siegel 1929) Let PpX,Yq P ZrX,Ys be a polynomial irreducible
in CrX,Ys. Suppose that the genus of the projective curve given by P “ 0 is at least 1.
Then Ppx, yq “ 0 has at most finitely many solutions in x, y P Z.
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The proof is quite difficult and involves ideas from diophantine approximation and
arithmetic geometry. Standard examples of curves of genus ě 2 are the hyper-elliptic
curve y2 “ qpxq where qpxq is a polynomial of degree at least 5 and distinct zeros and
the Fermat curve xn ` yn “ 1 with n ą 3.
Already in 1922 L.J. Mordell conjectured that under the conditions of Siegek’s theorem
Ppx, yq “ 0 has at most finitely many solutions in x, y P Q. This conjecture withstood
attempts to solve t for a long time until in 1983 G. Faltings managed to provide a proof of
it. Unfortunately, this proof can only be understood by experts in arithmetic algebraic
geometry. In 1990, P. Vojta’s found a brilliant new proof which, unfortunately, had the
same drawback as Faltings’ proof in that it was accessible only to a very small group
of experts. In 1990 E. Bombieri considerably simplified Vojta’s proof, thus making
it understandable for a large audience of number theorists and algebraic geometers.
About polynomial diophantine equations in more than two variable almost nothing is
known, although there exist a good many fascinating conjectures about them.


